1. bookVolume 26 (2019): Edition 3 (September 2019)
Détails du magazine
Première parution
16 May 2011
4 fois par an
Accès libre

Asymmetry Indices in Female Runners as Predictors of Running Velocity

Publié en ligne: 03 Mar 2020
Volume & Edition: Volume 26 (2019) - Edition 3 (September 2019)
Pages: 3 - 8
Reçu: 25 May 2019
Accepté: 15 Aug 2019
Détails du magazine
Première parution
16 May 2011
4 fois par an

1. Alday V., Frantz M. (2010). The effects of wind and altitude in the 400-m sprint with various IAAF track geometries. In J.A Gallian (ed.), Mathematics and sports (pp. 259-278). USA: The Mathematical Association of America.Search in Google Scholar

2. Ryan J.G., Harrison J.A. (2003). Technical adaptations of competitive sprinters induced by bend running. New Studies in Athletics 18(4), 57-67.Search in Google Scholar

3. Churchill S.M., Salo A.I.T., Trewartha G. (2011). The effect of the bend on technique and performance during maximal speed sprinting. Portuguese Journal of Sport Sciences 11(2), 471-474.Search in Google Scholar

4. Churchill S.M., Trewartha G., Bezodis I.N., Salo A.I.T. (2016). Force production during maximal effort bend sprinting: Theory vs reality. Scandinavian Journal of Medicine and Science in Sports 26(10), 1171-1179.10.1111/sms.1255926408499Search in Google Scholar

5. Chang Y.H., Kram R. (2007). Limitations to maximum running speed on flat curves. The Journal of Experimental Biology 210, 971-982.10.1242/jeb.0272817337710Search in Google Scholar

6. Viellehner J., Heinrich K., Funken J., Alt T., Potthast W. (2016). Lower extremity joint moments in athletics curve sprinting. In 34th International Conference on Biomechanics in Sports, July 2016 (pp. 1-4). Tsukuba, Japan.Search in Google Scholar

7. Ishimura K., Sakurai S. (2016). Asymmetry in determinants of running speed during curved sprinting. Journal of Applied Biomechanics 32(4), 394-400.10.1123/jab.2015-012727046932Search in Google Scholar

8. Beck O.N., Azua E.N., Grabowski A.M. (2018). Step time asymmetry increases metabolic energy expenditure during running. European Journal of Applied Physiology 118(10), 2147-2154.10.1007/s00421-018-3939-330027520Search in Google Scholar

9. Brughelli M, Cronin J.C.A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength and Conditioning Research 25(4), 933-939.10.1519/JSC.0b013e3181c6430820703170Search in Google Scholar

10. Morgan D.W., Martin P.E. (1989). Factors affecting running economy. Sports Medicine 7(5), 310-330.10.2165/00007256-198907050-000032662320Search in Google Scholar

11. Nummela A., Keränen T., Mikkelsson L.O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine 28(8), 655-661.10.1055/s-2007-96489617549657Search in Google Scholar

12. Kyrolainen H., Belli A., Komi P.V. (2001). Biomechanical factors affecting running economy. Medicine and Science in Sports and Exercise 33(8), 1330-1337.10.1097/00005768-200108000-0001411474335Search in Google Scholar

13. Saunders P.U., Pyne D.B., Telford R.D., Hawley J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine 34(7), 465-485.10.2165/00007256-200434070-0000515233599Search in Google Scholar

14. Maćkała K., Fostiak M., Kowalski K. (2015). Selected determinants of acceleration in the 100-m sprint. Journal of Human Kinetics 45(1), 135-148.10.1515/hukin-2015-0014441582625964817Search in Google Scholar

15. Struzik A., Konieczny G., Stawarz M., Grzesik K., Winiarski S., Rokita A. (2016). Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase. Applied Bionics and Biomechanics 2016, 1-9. DOI: dx.doi.org/10.1155/2016/16.10.1155/2016/7480709496952327516724Search in Google Scholar

Murphy A.J., Lockie R.G., Coutts A.J. (2003). Kinematic determinants of early acceleration in field sport athletes. Journal of Sports Science and Medicine 2, 144-150.Search in Google Scholar

17. Lockie R.G., Jalilvand F., Callaghan S.J., Jeffriess M.D., Murphy A. J. (2015). Interaction between leg muscle performance and sprint acceleration kinematics. Journal of Human Kinetics 49(1), 65-74.10.1515/hukin-2015-0109472318326839607Search in Google Scholar

18. Ogrodzka K., Niedźwiedzki T., Chwała W. (2011). Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint. Acta of Bioengineering and Biomechanics 13(3), 47-54.Search in Google Scholar

19. Winiarski S., Czamara A. (2012). Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta of Bioengineering and Biomechanics 14(2), 91-100.Search in Google Scholar

20. Gombatto S.P., Brock T., DeLork A., Jones G., Madden E., Rinere C. (2015). Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture 42(4), 539-544.10.1016/j.gaitpost.2015.08.01026380913Search in Google Scholar

21. Gilgen-Ammann R., Taube W., Wyss T. (2017). Gait asymmetry during 400- to 1000-m high-intensity track running in relation to injury history. International Journal of Sports Physiology and Performance 12, 157-160.10.1123/ijspp.2016-037927918678Search in Google Scholar

22. Hernandez A., Gross K., Gombatto S. (2017). Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. Clinical Biomechanics 47, 46-52.10.1016/j.clinbiomech.2017.05.01228600994Search in Google Scholar

23. Robinson R.O., Herzog W., Nigg B.M. (1987). Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics 10, 172-176.Search in Google Scholar

24. Herzog W., Nigg B.M., Read L.J., Olsson E. (1989). Asymmetries in ground reaction force patterns in normal human gait. Medicine and Science in Sports and Exercise 21(1), 110-114.10.1249/00005768-198902000-000202927295Search in Google Scholar

25. Zifchock R.A., Davis I. (2008). Non-consecutive versus consecutive footstrikes as an equivalent method of assessing gait asymmetry. Journal of Biomechanics 41(1), 226-230.10.1016/j.jbiomech.2007.07.00317692321Search in Google Scholar

26. Zifchock R.A., Davis I., Higginson J., Royer T. (2008). The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 27(4), 622–627.10.1016/j.gaitpost.2007.08.00617913499Search in Google Scholar

27. Exell T., Irwin G., Gittoes M., Kerwin, D. (2017). Strength and performance asymmetry during maximal velocity sprint running. Scandinavian Journal of Medicine and Science in Sports 27(11), 1273-1282.10.1111/sms.1275927671707Search in Google Scholar

28. Forczek W., Staszkiewicz R. (2012). Changes of kinematic gait parameters due to pregnancy. Acta of Bioengineering and Biomechanics 14(4), 113-119. DOI: 10.5277/abb120413.Search in Google Scholar

29. Nigg S., Vienneau J., Maurer C., Nigg B.M. (2013). Development of a symmetry index using discrete variables. Gait and Posture 38(1), 115-119.10.1016/j.gaitpost.2012.10.02423218726Search in Google Scholar

30. Van Dongen S. (2018). Human bodily asymmetry relates to behavioral lateralization and may not reliably reflect developmental instability. Symmetry 10(4), 1-7. DOI: 10.3390/sym10040117.10.3390/sym10040117Search in Google Scholar

31. Drid P., Drapsin M., Trivic T., Lukač D., Obadov S., Milosevic Z. (2009). Asymmetry of muscle strength in elite athletes. Biomedical Human Kinetics 1, 3-5.10.2478/v10101-009-0002-1Search in Google Scholar

32. Bailey C., Sato K., Alexander R., Chiang C., Stone M.H. (2013). Isometric force production symmetry and jumping performance in collegiate athletes. Journal of Trainology 2, 1-5.10.17338/trainology.2.1_1Search in Google Scholar

33. Knapik J.J., Bauman C.L., Jones B.H., Harris J.M., Vaughan L. (1991). Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. The American Journal of Sports Medicine 19(1), 76-81.10.1177/0363546591019001132008935Search in Google Scholar

34. Delahunt E., Sweeney L., Chawke M., Kelleher J., Murphy K., Patterson, M., Prendiville A. (2012). Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. Journal of Orthopaedic Research 30(1), 72-78.10.1002/jor.2150421809380Search in Google Scholar

35. Pappas E., Carpes F.P. (2012). Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks. Journal of Science and Medicine in Sport 15(1), 87-92.10.1016/j.jsams.2011.07.00821925949Search in Google Scholar

36. Doherty C., Bleakley C., Hertel J., Caulfield B., Ryan J., Sweeney K., Delahunt, E. (2015). Coordination and symmetry patterns during the drop vertical jump, 6 months after first-time lateral ankle sprain. Journal of Orthopaedic Research 33(10), 1537-1544.10.1002/jor.2291525940807Search in Google Scholar

37. Jordan M.J., Aagaard P., Herzog W. (2015). Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scandinavian Journal of Medicine and Science in Sports 25(3), e301-e309.10.1111/sms.1231425212216Search in Google Scholar

38. Radzak K.N., Putnam A.M., Tamura K., Hetzler R.K., Stickley C.D. (2017). Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait and Posture 51, 268-274.10.1016/j.gaitpost.2016.11.00527842295Search in Google Scholar

39. Hunter S. K., Thompson M. W., Adams R. D. (2000). Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 55(6), 264-273.10.1093/gerona/55.6.B264Search in Google Scholar

40. Perry M.C., Carville S.F., Smith I.C. H., Rutherford O.M., Newham D.J. (2007). Strength, power output and symmetry of leg muscles: Effect of age and history of falling. European Journal of Applied Physiology 100(5), 553-561.10.1007/s00421-006-0247-016847676Search in Google Scholar

41. Kaufman K.R., Miller L.S., Sutherland D.H. (1996). Gait asymmetry in patients with limb-length inequality. Journal of Pediatric Orthopedics 16(2), 144-150.10.1097/01241398-199603000-00002Search in Google Scholar

42. Laroche D.P., Cook S.B., MacKala K. (2012). Strength asymmetry increases gait asymmetry and variability in older women. Medicine and Science in Sports and Exercise 44(11), 2172-2181.10.1249/MSS.0b013e31825e1d31346364822617401Search in Google Scholar

43. Caserotti P., Aagaard P., Simonsen E.B., Puggaard L. (2001). Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology 84(3), 206-212.10.1007/s00421017000611320637Search in Google Scholar

44. Jakobsen M.D., Sundstrup E., Randers M.B., Kjaer M., Andersen L.L., Krustrup P., Aagaard P. (2012). The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science 31(4), 970-986.10.1016/j.humov.2011.10.00122397814Search in Google Scholar

45. Khurelbaatar T., Kim K., Lee S.K., Kim Y.H. (2015). Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait and Posture 42(1), 65-69.10.1016/j.gaitpost.2015.04.00725957652Search in Google Scholar

46. Robert-Lachaine X., Mecheri H., Larue C., Plamondon A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical and Biological Engineering and Computing 55(4), 609-619.10.1007/s11517-016-1537-227379397Search in Google Scholar

47. Perttunen J.R., Anttila E., Sodergard J., Merikanto J., Komi P.V. (2004). Gait asymmetry in patients with limb length discrepancy. Scandinavian Journal of Medicine and Science in Sports 14(1), 49-56.10.1111/j.1600-0838.2003.00307.x14723788Search in Google Scholar

48. Gurney B., Mermier C., Robergs R., Gibson A., Rivero D. (2001). Effects of limb-length discrepancy on gait economy and lower-extremity muscle activity in older adults. Journal of Bone and Joint Surgery – Series A 83(6), 907-915.10.2106/00004623-200106000-0001311407800Search in Google Scholar

49. Liu X.C., Fabry G., Molenaers G., Lammens J., Moens P. (1998). Kinematic and kinetic asymmetry in patients with leg-length discrepancy. Journal of Pediatric Orthopedics 18(2), 187-189.10.1097/01241398-199803000-00010Search in Google Scholar

50. Gurney B. (2002). Leg length discrepancy – Review. Gait and Posture 15, 195-206.10.1016/S0966-6362(01)00148-5Search in Google Scholar

51. Bredeweg S.W., Buist I., Kluitenberg B. (2013). Differences in kinetic asymmetry between injured and noninjured novice runners: A prospective cohort study. Gait and Posture 38(4), 847-85.10.1016/j.gaitpost.2013.04.01423673088Search in Google Scholar

52. Exell T. (2010). Lower-limb biomechanical asymmetry in maximal velocity sprint running. Doctoral thesis, University of Wales.Search in Google Scholar

53. Klimek A., Chwała, W. (2007). The evaluation of energy cost of effort and changes of centre of mass (COM) during race walking at starting speed after improving the length of lower extremities. Acta of Bioengineering and Biomechanics 9(2), 55-60.Search in Google Scholar

54. Cavagna G.A. (2006). The landing-take-off asymmetry in human running. Journal of Experimental Biology 209(20), 4051-4060.10.1242/jeb.0234417023599Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo