[1. Alday V., Frantz M. (2010). The effects of wind and altitude in the 400-m sprint with various IAAF track geometries. In J.A Gallian (ed.), Mathematics and sports (pp. 259-278). USA: The Mathematical Association of America.]Search in Google Scholar
[2. Ryan J.G., Harrison J.A. (2003). Technical adaptations of competitive sprinters induced by bend running. New Studies in Athletics 18(4), 57-67.]Search in Google Scholar
[3. Churchill S.M., Salo A.I.T., Trewartha G. (2011). The effect of the bend on technique and performance during maximal speed sprinting. Portuguese Journal of Sport Sciences 11(2), 471-474.]Search in Google Scholar
[4. Churchill S.M., Trewartha G., Bezodis I.N., Salo A.I.T. (2016). Force production during maximal effort bend sprinting: Theory vs reality. Scandinavian Journal of Medicine and Science in Sports 26(10), 1171-1179.10.1111/sms.1255926408499]Search in Google Scholar
[5. Chang Y.H., Kram R. (2007). Limitations to maximum running speed on flat curves. The Journal of Experimental Biology 210, 971-982.10.1242/jeb.0272817337710]Search in Google Scholar
[6. Viellehner J., Heinrich K., Funken J., Alt T., Potthast W. (2016). Lower extremity joint moments in athletics curve sprinting. In 34th International Conference on Biomechanics in Sports, July 2016 (pp. 1-4). Tsukuba, Japan.]Search in Google Scholar
[7. Ishimura K., Sakurai S. (2016). Asymmetry in determinants of running speed during curved sprinting. Journal of Applied Biomechanics 32(4), 394-400.10.1123/jab.2015-012727046932]Search in Google Scholar
[8. Beck O.N., Azua E.N., Grabowski A.M. (2018). Step time asymmetry increases metabolic energy expenditure during running. European Journal of Applied Physiology 118(10), 2147-2154.10.1007/s00421-018-3939-330027520]Search in Google Scholar
[9. Brughelli M, Cronin J.C.A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength and Conditioning Research 25(4), 933-939.10.1519/JSC.0b013e3181c6430820703170]Search in Google Scholar
[10. Morgan D.W., Martin P.E. (1989). Factors affecting running economy. Sports Medicine 7(5), 310-330.10.2165/00007256-198907050-000032662320]Search in Google Scholar
[11. Nummela A., Keränen T., Mikkelsson L.O. (2007). Factors related to top running speed and economy. International Journal of Sports Medicine 28(8), 655-661.10.1055/s-2007-96489617549657]Search in Google Scholar
[12. Kyrolainen H., Belli A., Komi P.V. (2001). Biomechanical factors affecting running economy. Medicine and Science in Sports and Exercise 33(8), 1330-1337.10.1097/00005768-200108000-0001411474335]Search in Google Scholar
[13. Saunders P.U., Pyne D.B., Telford R.D., Hawley J.A. (2004). Factors affecting running economy in trained distance runners. Sports Medicine 34(7), 465-485.10.2165/00007256-200434070-0000515233599]Search in Google Scholar
[14. Maćkała K., Fostiak M., Kowalski K. (2015). Selected determinants of acceleration in the 100-m sprint. Journal of Human Kinetics 45(1), 135-148.10.1515/hukin-2015-0014441582625964817]Search in Google Scholar
[15. Struzik A., Konieczny G., Stawarz M., Grzesik K., Winiarski S., Rokita A. (2016). Relationship between lower limb angular kinematic variables and the effectiveness of sprinting during the acceleration phase. Applied Bionics and Biomechanics 2016, 1-9. DOI: dx.doi.org/10.1155/2016/16.10.1155/2016/7480709496952327516724]Search in Google Scholar
[Murphy A.J., Lockie R.G., Coutts A.J. (2003). Kinematic determinants of early acceleration in field sport athletes. Journal of Sports Science and Medicine 2, 144-150.]Search in Google Scholar
[17. Lockie R.G., Jalilvand F., Callaghan S.J., Jeffriess M.D., Murphy A. J. (2015). Interaction between leg muscle performance and sprint acceleration kinematics. Journal of Human Kinetics 49(1), 65-74.10.1515/hukin-2015-0109472318326839607]Search in Google Scholar
[18. Ogrodzka K., Niedźwiedzki T., Chwała W. (2011). Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint. Acta of Bioengineering and Biomechanics 13(3), 47-54.]Search in Google Scholar
[19. Winiarski S., Czamara A. (2012). Evaluation of gait kinematics and symmetry during the first two stages of physiotherapy after anterior cruciate ligament reconstruction. Acta of Bioengineering and Biomechanics 14(2), 91-100.]Search in Google Scholar
[20. Gombatto S.P., Brock T., DeLork A., Jones G., Madden E., Rinere C. (2015). Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture 42(4), 539-544.10.1016/j.gaitpost.2015.08.01026380913]Search in Google Scholar
[21. Gilgen-Ammann R., Taube W., Wyss T. (2017). Gait asymmetry during 400- to 1000-m high-intensity track running in relation to injury history. International Journal of Sports Physiology and Performance 12, 157-160.10.1123/ijspp.2016-037927918678]Search in Google Scholar
[22. Hernandez A., Gross K., Gombatto S. (2017). Differences in lumbar spine and lower extremity kinematics during a step down functional task in people with and people without low back pain. Clinical Biomechanics 47, 46-52.10.1016/j.clinbiomech.2017.05.01228600994]Search in Google Scholar
[23. Robinson R.O., Herzog W., Nigg B.M. (1987). Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics 10, 172-176.]Search in Google Scholar
[24. Herzog W., Nigg B.M., Read L.J., Olsson E. (1989). Asymmetries in ground reaction force patterns in normal human gait. Medicine and Science in Sports and Exercise 21(1), 110-114.10.1249/00005768-198902000-000202927295]Search in Google Scholar
[25. Zifchock R.A., Davis I. (2008). Non-consecutive versus consecutive footstrikes as an equivalent method of assessing gait asymmetry. Journal of Biomechanics 41(1), 226-230.10.1016/j.jbiomech.2007.07.00317692321]Search in Google Scholar
[26. Zifchock R.A., Davis I., Higginson J., Royer T. (2008). The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 27(4), 622–627.10.1016/j.gaitpost.2007.08.00617913499]Search in Google Scholar
[27. Exell T., Irwin G., Gittoes M., Kerwin, D. (2017). Strength and performance asymmetry during maximal velocity sprint running. Scandinavian Journal of Medicine and Science in Sports 27(11), 1273-1282.10.1111/sms.1275927671707]Search in Google Scholar
[28. Forczek W., Staszkiewicz R. (2012). Changes of kinematic gait parameters due to pregnancy. Acta of Bioengineering and Biomechanics 14(4), 113-119. DOI: 10.5277/abb120413.]Search in Google Scholar
[29. Nigg S., Vienneau J., Maurer C., Nigg B.M. (2013). Development of a symmetry index using discrete variables. Gait and Posture 38(1), 115-119.10.1016/j.gaitpost.2012.10.02423218726]Search in Google Scholar
[30. Van Dongen S. (2018). Human bodily asymmetry relates to behavioral lateralization and may not reliably reflect developmental instability. Symmetry 10(4), 1-7. DOI: 10.3390/sym10040117.10.3390/sym10040117]Search in Google Scholar
[31. Drid P., Drapsin M., Trivic T., Lukač D., Obadov S., Milosevic Z. (2009). Asymmetry of muscle strength in elite athletes. Biomedical Human Kinetics 1, 3-5.10.2478/v10101-009-0002-1]Search in Google Scholar
[32. Bailey C., Sato K., Alexander R., Chiang C., Stone M.H. (2013). Isometric force production symmetry and jumping performance in collegiate athletes. Journal of Trainology 2, 1-5.10.17338/trainology.2.1_1]Search in Google Scholar
[33. Knapik J.J., Bauman C.L., Jones B.H., Harris J.M., Vaughan L. (1991). Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. The American Journal of Sports Medicine 19(1), 76-81.10.1177/0363546591019001132008935]Search in Google Scholar
[34. Delahunt E., Sweeney L., Chawke M., Kelleher J., Murphy K., Patterson, M., Prendiville A. (2012). Lower limb kinematic alterations during drop vertical jumps in female athletes who have undergone anterior cruciate ligament reconstruction. Journal of Orthopaedic Research 30(1), 72-78.10.1002/jor.2150421809380]Search in Google Scholar
[35. Pappas E., Carpes F.P. (2012). Lower extremity kinematic asymmetry in male and female athletes performing jump-landing tasks. Journal of Science and Medicine in Sport 15(1), 87-92.10.1016/j.jsams.2011.07.00821925949]Search in Google Scholar
[36. Doherty C., Bleakley C., Hertel J., Caulfield B., Ryan J., Sweeney K., Delahunt, E. (2015). Coordination and symmetry patterns during the drop vertical jump, 6 months after first-time lateral ankle sprain. Journal of Orthopaedic Research 33(10), 1537-1544.10.1002/jor.2291525940807]Search in Google Scholar
[37. Jordan M.J., Aagaard P., Herzog W. (2015). Lower limb asymmetry in mechanical muscle function: A comparison between ski racers with and without ACL reconstruction. Scandinavian Journal of Medicine and Science in Sports 25(3), e301-e309.10.1111/sms.1231425212216]Search in Google Scholar
[38. Radzak K.N., Putnam A.M., Tamura K., Hetzler R.K., Stickley C.D. (2017). Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait and Posture 51, 268-274.10.1016/j.gaitpost.2016.11.00527842295]Search in Google Scholar
[39. Hunter S. K., Thompson M. W., Adams R. D. (2000). Relationships among age-associated strength changes and physical activity level, limb dominance, and muscle group in women. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences 55(6), 264-273.10.1093/gerona/55.6.B264]Search in Google Scholar
[40. Perry M.C., Carville S.F., Smith I.C. H., Rutherford O.M., Newham D.J. (2007). Strength, power output and symmetry of leg muscles: Effect of age and history of falling. European Journal of Applied Physiology 100(5), 553-561.10.1007/s00421-006-0247-016847676]Search in Google Scholar
[41. Kaufman K.R., Miller L.S., Sutherland D.H. (1996). Gait asymmetry in patients with limb-length inequality. Journal of Pediatric Orthopedics 16(2), 144-150.10.1097/01241398-199603000-00002]Search in Google Scholar
[42. Laroche D.P., Cook S.B., MacKala K. (2012). Strength asymmetry increases gait asymmetry and variability in older women. Medicine and Science in Sports and Exercise 44(11), 2172-2181.10.1249/MSS.0b013e31825e1d31346364822617401]Search in Google Scholar
[43. Caserotti P., Aagaard P., Simonsen E.B., Puggaard L. (2001). Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. European Journal of Applied Physiology 84(3), 206-212.10.1007/s00421017000611320637]Search in Google Scholar
[44. Jakobsen M.D., Sundstrup E., Randers M.B., Kjaer M., Andersen L.L., Krustrup P., Aagaard P. (2012). The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping. Human Movement Science 31(4), 970-986.10.1016/j.humov.2011.10.00122397814]Search in Google Scholar
[45. Khurelbaatar T., Kim K., Lee S.K., Kim Y.H. (2015). Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors. Gait and Posture 42(1), 65-69.10.1016/j.gaitpost.2015.04.00725957652]Search in Google Scholar
[46. Robert-Lachaine X., Mecheri H., Larue C., Plamondon A. (2017). Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Medical and Biological Engineering and Computing 55(4), 609-619.10.1007/s11517-016-1537-227379397]Search in Google Scholar
[47. Perttunen J.R., Anttila E., Sodergard J., Merikanto J., Komi P.V. (2004). Gait asymmetry in patients with limb length discrepancy. Scandinavian Journal of Medicine and Science in Sports 14(1), 49-56.10.1111/j.1600-0838.2003.00307.x14723788]Search in Google Scholar
[48. Gurney B., Mermier C., Robergs R., Gibson A., Rivero D. (2001). Effects of limb-length discrepancy on gait economy and lower-extremity muscle activity in older adults. Journal of Bone and Joint Surgery – Series A 83(6), 907-915.10.2106/00004623-200106000-0001311407800]Search in Google Scholar
[49. Liu X.C., Fabry G., Molenaers G., Lammens J., Moens P. (1998). Kinematic and kinetic asymmetry in patients with leg-length discrepancy. Journal of Pediatric Orthopedics 18(2), 187-189.10.1097/01241398-199803000-00010]Search in Google Scholar
[50. Gurney B. (2002). Leg length discrepancy – Review. Gait and Posture 15, 195-206.10.1016/S0966-6362(01)00148-5]Search in Google Scholar
[51. Bredeweg S.W., Buist I., Kluitenberg B. (2013). Differences in kinetic asymmetry between injured and noninjured novice runners: A prospective cohort study. Gait and Posture 38(4), 847-85.10.1016/j.gaitpost.2013.04.01423673088]Search in Google Scholar
[52. Exell T. (2010). Lower-limb biomechanical asymmetry in maximal velocity sprint running. Doctoral thesis, University of Wales.]Search in Google Scholar
[53. Klimek A., Chwała, W. (2007). The evaluation of energy cost of effort and changes of centre of mass (COM) during race walking at starting speed after improving the length of lower extremities. Acta of Bioengineering and Biomechanics 9(2), 55-60.]Search in Google Scholar
[54. Cavagna G.A. (2006). The landing-take-off asymmetry in human running. Journal of Experimental Biology 209(20), 4051-4060.10.1242/jeb.0234417023599]Search in Google Scholar