Accès libre

Evaluation of the polarity effect of Roos parallel plate ionization chamber in build-up region

À propos de cet article

Citez

1. Schulz RJ, Almond PR, Cunningham JC, et al. A protocol for the determination of absorbed dose from high-energy photon and electron beams (AAPM TG-21). Med Phys. 1983;10(3):741-771. https://doi.org/10.1118/1.595446 Search in Google Scholar

2. Khan F M, Doppke K P, Hogstrom K R, et al. Clinical electron-beam dosimetry. (AAPM TG-25). Med Phys. 1991;18(1):73-109. https://doi.org/10.1118/1.596695 Search in Google Scholar

3. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Technical Reports Series No. 398. Vienna; 2000. Search in Google Scholar

4. International Atomic Energy Agency. The use of plane-parallel ionization chambers in high-energy electron and photon beams: An international code of practice for dosimetry. Technical Reports Series No. 381. Vienna; 1995. Search in Google Scholar

5. Wickman G, Holmstrom T. Polarity effect in plane-parallel ionization chambers using air or a dielectric liquid as ionization medium. Med Phys. 1992;19(3):637-640. https://doi.org/10.1118/1.596934 Search in Google Scholar

6. Ramsey CR, Spencer KM, Oliver AL. Ionization chamber, electrometer, linear accelerator, field size, and energy dependence of the polarity effect in electron dosimetry. Med Phys. 1999;26(2):214-219. https://doi.org/10.1118/1.598507 Search in Google Scholar

7. Gerbi BJ, Khan FM. The polarity effect for commercially available plane-parallel ionization chambers. Med Phys. 1987;14(2):210-215. https://doi.org/10.1118/1.596072 Search in Google Scholar

8. Gerbi BJ. The response characteristics of a newly designed plane-parallel ionization chamber in high-energy photon and electron beams. Med Phys. 1993;20(5):1411-1415. https://doi.org/10.1118/1.597105 Search in Google Scholar

9. Kubo H. Evaluations of two solid water parallel plate chambers in high-energy photon and electron beams. Med Phys. 1993;20(2):341-345. https://doi.org/10.1118/1.597074 Search in Google Scholar

10. Aget H, Rosenwald JC. Polarity effect for various ionization chambers with multiple irradiation conditions in electron beams. Med Phys. 1991;18(1): 67-72. https://doi.org/10.1118/1.596694 Search in Google Scholar

11. De Souza CN, Caldas LVE, Sibata CH, et al. Two new parallel-plate ionization chambers for electron beam dosimetry. Radiation Measurements. 1996;26:65-74. https://doi.org/10.1016/1350-4487(95)00254-5 Search in Google Scholar

12. McEwen MR, Williams AJ, DuSautoy AR. Determination of absorbed dose calibration factors for therapy level electron beam ionization chambers. Phys Med Biol. 2001;46(3):741755. https://doi.org/10.1088/0031-9155/46/3/31011277222 Search in Google Scholar

13. Pearce J, Thomas R, DuSautoy A. The characterization of the Advanced Markus ionization chamber for use in reference electron dosimetry in the UK. Phys Med Biol. 2006;51(3):473–83. https://doi.org/10.1088/0031-9155/51/3/00116424576 Search in Google Scholar

14. Ogata1 T, Uehara1 K, Nakayama1 M. et al. Polarity correction factor for flattening filter free photon beams in several cylindrical ionization chambers. Radiol Phys Technol. 2016; 9(2):187192. https://doi.org/10.1007/s12194-016-0348-326873138 Search in Google Scholar

15. Butson MJ, Yu PKN, Cheung T. Polarity effect on surface dose measurement for an Attix parallel plate ionization chamber. Australas Phys Eng Sci Med. 2003;26(2):84-86. https://doi.org/10.1007/BF03178463 Search in Google Scholar

16. Kron T, McNiven A, Witruk B, et al. An experimental study of recombination and polarity effect in a set of customized plane parallel ionization chambers. Australas Phys Eng Sci Med. 2006;29(4):291-299. https://doi.org/10.1007/BF0317839317260582 Search in Google Scholar

17. Miller JR, Hooten BD, Micka JA, et al. Polarity effects and apparent ion recombination in microionization chambers. Med Phys. 2016;43(5):2141-2152. https://doi.org/10.1118/1.494487227147326 Search in Google Scholar

18. Tessier F, Hooten BD, McEwen MR. Zero-shift thimble ionization chamber. Med Phys. 2010;37(3): 1161-1163. https://doi.org/10.1118/1.331407220384252 Search in Google Scholar

19. Martin-Martin G, Aguila PB, Barbés B, et al. Assessment of ion recombination correction and polarity effects for specific ionization chambers in flattening-filter-free photon beams. Physica Medica. 2019;67:176-184. https://doi.org/10.1016/j.ejmp.2019.07.01831734555 Search in Google Scholar

20. Physikalisch-Technische-Werkstatten,. Detectors Detectors for Ionizing Radiation Including Codes of Practice. www.ptw.de Search in Google Scholar

21. Dusautoy A, Roos M, Svensson H, et al. Review of data and methods recommended in the international code of practice for dosimetry IAEA TRS 381, the use of plane parallel ionization chambers in high energy electron and photon beams: IAEA TDS 1173. Vienna: International Atomic Energy Agency; 2000. Search in Google Scholar

22. Nilson B, Montelius A. Fluence perturbation in photon beams under nonequilibrium conditions. Med Phys. 1986;13(2):191-195. https://doi.org/10.1118/1.5958953702815 Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics