Accès libre

A comprehensive Monte Carlo study to design a novel multi-nanoparticle loaded nanocomposites for augmentation of attenuation coefficient in the energy range of diagnostic X-rays

À propos de cet article

Citez

1. Malekzadeh R, Mehnati P, Sooteh MY, Mesbahi A. Influence of the size of nano-and microparticles and photon energy on mass attenuation coefficients of bismuth-silicon shields in diagnostic radiology. Radiological Physics and Technology. 2019;12(3):325-334. https://doi.org/10.1007/s12194-019-00529-310.1007/s12194-019-00529-331385155 Search in Google Scholar

2. Mesbahi A, Verdipoor K, Zolfagharpour F, Alemi A. Investigation of fast neutron shielding properties of new polyurethane-based composites loaded with B4C, BeO, WO3, ZnO, and Gd2O3 micro-and nanoparticles. Polish Journal of Medical Physics and Engineering. 2019;25(4):211-219. https://doi.org/10.2478/pjmpe-2019-002810.2478/pjmpe-2019-0028 Search in Google Scholar

3. Kim J, Uhm YR, Byungchul L, et al. Radiation shielding members including nanoparticles as a radiation shielding material and method for preparing the same. In: Google Patents; 2012. Search in Google Scholar

4. Sayyed M. Investigation of shielding parameters for smart polymers. Chinese Journal of Physics. 2016;54(3):408-415. https://doi.org/10.1016/j.cjph.2016.05.00210.1016/j.cjph.2016.05.002 Search in Google Scholar

5. Elmahroug Y, Tellili B, Souga C. Determination of shielding parameters for different types of resins. Annals of Nuclear Energy. 2014;63:619-623. https://doi.org/10.1016/j.anucene.2013.09.00710.1016/j.anucene.2013.09.007 Search in Google Scholar

6. Singh VP, Badiger N. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Physics and Chemistry. 2015;41(3):276-283. https://doi.org/10.1134/S108765961503017710.1134/S1087659615030177 Search in Google Scholar

7. Hassan H, Badran H, Aydarous A, Sharshar T. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015;360:81-89. https://doi.org/10.1016/j.nimb.2015.07.12610.1016/j.nimb.2015.07.126 Search in Google Scholar

8. Movahedi MM, Abdi A, Mehdizadeh A, et al. Novel paint design based on nanopowder to protection against X and gamma rays. Indian Journal of Nuclear Medicine: IJNM: the official journal of the Society of Nuclear Medicine, India. 2014;29(1):18. https://doi.org/10.4103/0972-3919.12576310.4103/0972-3919.125763392874424591777 Search in Google Scholar

9. Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology. 2012;5(2):47. https://doi.org/10.2478/v10102-012-0009-210.2478/v10102-012-0009-2348565323118587 Search in Google Scholar

10. McCaffrey J, Mainegra-Hing E, Shen H. Optimizing non-Pb radiation shielding materials using bilayers. Medical Physics. 2009;36(12):5586-5594. https://doi.org/10.1118/1.326083910.1118/1.326083920095271 Search in Google Scholar

11. AbuAlRoos NJ, Amin NAB, Zainon R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiation Physics and Chemistry. 2019;165:108439. https://doi.org/10.1016/j.radphyschem.2019.10843910.1016/j.radphyschem.2019.108439 Search in Google Scholar

12. Dejangah M, Ghojavand M, Poursalehi R, Gholipour P. X-ray attenuation and mechanical properties of tungsten-silicone rubber nanocomposites. Materials Research Express. 2019;6(8):085045. https://doi.org/10.1088/2053-1591/ab1a8910.1088/2053-1591/ab1a89 Search in Google Scholar

13. Toyen D, Rittirong A, Poltabtim W, Saenboonruang K. Flexible, lead-free, gamma-shielding materials based on natural rubber/metal oxide composites. Iranian Polymer Journal. 2018;27(1):33-41. https://doi.org/10.1007/s13726-017-0584-310.1007/s13726-017-0584-3 Search in Google Scholar

14. Aghaz A, Faghihi R, Mortazavi S, Haghparast A, Mehdizadeh S, Sina S. Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. International Journal of Radiation Research. 2016;14(2):127. https://doi.org/10.18869/acadpub.ijrr.14.2.12710.18869/acadpub.ijrr.14.2.127 Search in Google Scholar

15. Shik NA, Gholamzadeh L. X-ray shielding performance of the EPVC composites with micro-or nanoparticles of WO3, PbO or Bi2O3. Applied Radiation and Isotopes. 2018;139:61-65. https://doi.org/10.1016/j.apradiso.2018.03.02510.1016/j.apradiso.2018.03.02529723694 Search in Google Scholar

16. Kim J, Seo D, Lee BC, Seo YS, Miller WH. Nano-W Dispersed Gamma Radiation Shielding Materials. Advanced engineering materials. 2014;16(9):1083-1089. https://doi.org/10.1002/adem.20140012710.1002/adem.201400127 Search in Google Scholar

17. Mansouri E, Mesbahi A, Malekzadeh R, Mansouri A. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nanoparticle concentration. Radiation and Environmental Biophysics. 2020:1-18. https://doi.org/10.1007/s00411-020-00865-810.1007/s00411-020-00865-832780196 Search in Google Scholar

18. Ma J, La LTB, Zaman I, et al. Fabrication, structure and properties of epoxy/metal nanocomposites. Macromolecular Materials and Engineering. 2011;296(5):465-474. https://doi.org/10.1002/mame.20100040910.1002/mame.201000409 Search in Google Scholar

19. La LB, Leatherday C, Qin P, et al. The interaction between encapsulated Gd2O3 particles and polymeric matrix: The mechanism of fracture and X-ray attenuation properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017;535:175-183. https://doi.org/10.1016/j.colsurfa.2017.09.03810.1016/j.colsurfa.2017.09.038 Search in Google Scholar

20. Verdipoor K, Alemi A, Mesbahi A. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding. Radiation Physics and Chemistry. 2018;147:85-90. https://doi.org/10.1016/j.radphyschem.2018.02.01710.1016/j.radphyschem.2018.02.017 Search in Google Scholar

21. Wang P, Tang X, Chai H, Chen D, Qiu Y. Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material. Fusion Engineering and Design. 2015;101:218-225. https://doi.org/10.1016/j.fusengdes.2015.09.00710.1016/j.fusengdes.2015.09.007 Search in Google Scholar

22. Hubbell JH, Seltzer SM. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest. National Inst. of Standards and Technology-PL, Gaithersburg, MD (United States); 1995. https://doi.org/10.6028/NIST.IR.563210.6028/NIST.IR.5632 Search in Google Scholar

23. Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom-a program for calculating X-ray attenuation coefficients. Radiation Physics and Chemistry. 2004;71(3-4):653-654. https://doi.org/10.1016/j.radphyschem.2004.04.04010.1016/j.radphyschem.2004.04.040 Search in Google Scholar

24. Yu D, Shu-Quan C, Hong-Xu Z, et al. Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chinese Physics Letters. 2012;29(10):108102. https://doi.org/10.1088/0256-307X/29/10/10810210.1088/0256-307X/29/10/108102 Search in Google Scholar

25. Nambiar S, Osei EK, Yeow JT. Polymer nanocomposite-based shielding against diagnostic X-rays. Journal of Applied Polymer Science. 2013;127(6):4939-4946. https://doi.org/10.1002/app.3798010.1002/app.37980 Search in Google Scholar

26. Atashi P, Rahmani S, Ahadi B, Rahmati A. Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. Journal of Materials Science: Materials in Electronics. 2018;29(14):12306-12322. https://doi.org/10.1007/s10854-018-9344-110.1007/s10854-018-9344-1 Search in Google Scholar

27. Akbay İK, Güngör A, Özdemir T. Optimization of the vulcanization parameters for ethylene-propylenediene termonomer (EPDM)/ground waste tyre composite using response surface methodology. Polymer Bulletin. 2017;74(12):5095-5109. https://doi.org/10.1007/s00289-017-2001-710.1007/s00289-017-2001-7 Search in Google Scholar

28. Sonsilphong A, Wongkasem N. Light-weight radiation protection by non-lead materials in X-ray regimes. Paper presented at: 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA)2014. https://doi.org/10.1109/ICEAA.2014.690393910.1109/ICEAA.2014.6903939 Search in Google Scholar

29. McCaffrey J, Shen H, Downton B, Mainegra-Hing E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical Physics. 2007;34(2):530-537. https://doi.org/10.1118/1.242640410.1118/1.242640417388170 Search in Google Scholar

30. McCaffrey J, Tessier F, Shen H. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians. Medical Physics. 2012;39(7Part1):4537-4546. https://doi.org/10.1118/1.473050410.1118/1.473050422830785 Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics