Accès libre

Quantitative and dosimetric analysis for treating synchronous bilateral breast cancer using two radiotherapy planning techniques

À propos de cet article

Citez

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. https://doi.org/10.3322/caac.2149210.3322/caac.21492 Search in Google Scholar

2. Krishnappa R, Chikaraddi SB, Deshmane V. Primary synchronous bilateral breast cancer. Indian J Cancer. 2014;51(3):256-258. https://doi.org/10.4103/0019-509X.14676210.4103/0019-509X.146762 Search in Google Scholar

3. Irvine T, Allen DS, Gillett C, Hamed H, Fentiman IS. Prognosis of synchronous bilateral breast cancer. Br J Surg. 2009;96(4):376-380. https://doi.org/10.1002/bjs.655310.1002/bjs.6553 Search in Google Scholar

4. Early Breast Cancer Trialists' Collaborative Group (EBCTCG), Darby S, McGale P, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378(9804):1707-1716. https://doi.org/10.1016/S0140-6736(11)61629-210.1016/S0140-6736(11)61629-2 Search in Google Scholar

5. Nicolini G, Clivio A, Fogliata A, Vanetti E, Cozzi L. Simultaneous integrated boost radiotherapy for bilateral breast: A treatment planning and dosimetric comparison for volumetric modulated arc and fixed field intensity modulated therapy. Radiat Oncol. 2009;4:27. https://doi.org/10.1186/1748-717X-4-2710.1186/1748-717X-4-27272266019630947 Search in Google Scholar

6. Hodapp N. ICRU Report 83 Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT). Strahlenther Onkol. 2012;188:97-99. https://doi.org/10.1007/s00066-011-0015-x10.1007/s00066-011-0015-x22234506 Search in Google Scholar

7. Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. Int J Radiat Oncol Biol Phys. 2006;64:333-342. https://doi.org/10.1016/j.ijrobp.2005.09.02810.1016/j.ijrobp.2005.09.02816414369 Search in Google Scholar

8. Yoon M, Park SY, Shin D, et al. A new homogeneity index based on statistical analysis of the dose-volume histogram. J Appl Clin Med Phys. 2007;8(2):9-17. https://doi.org/10.1120/jacmp.v8i2.239010.1120/jacmp.v8i2.2390572241717592460 Search in Google Scholar

9. Ramella S, Trodella L, Mineo TC et al. Adding ipsilateral V20 and V30 to conventional dosimetric constraints predicts radiation pneumonitis in stage IIIA-B NSCLC treated with combined-modality therapy. Int J Radiat Oncol Biol Phys. 2010;76(1):110-115. https://doi.org/10.1016/j.ijrobp.2009.01.03610.1016/j.ijrobp.2009.01.03619619955 Search in Google Scholar

10. Song CH, Pyo H, Moon SH, Kim TH, Kim DW, Cho KH. Treatment-related pneumonitis and acute esophagitis in non-small-cell lung cancer patients treated with chemotherapy and helical tomotherapy. Int J Radiat Oncol Biol Phys. 2010;78(3):651-658. https://doi.org/10.1016/j.ijrobp.2009.08.06810.1016/j.ijrobp.2009.08.06820207499 Search in Google Scholar

11. Lind PA, Wennberg B, Gagliardi G, et al. ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer. Int J Radiat Oncol Biol Phys. 2006;64:765-770. https://doi.org/10.1016/j.ijrobp.2005.08.01110.1016/j.ijrobp.2005.08.011 Search in Google Scholar

12. Yorke ED, Jackson A, Rosenzweig KE, Braban L, Leibel SA, Ling CC. Correlation of dosimetric factors and radiation pneumonitis for non-small-cell lung cancer patients in a recently completed dose escalation study. Int J Radiat Oncol Biol Phys. 2005;63(3):672-682. https://doi.org/10.1016/j.ijrobp.2005.03.02610.1016/j.ijrobp.2005.03.026 Search in Google Scholar

13. Fan LL, Luo YK, Xu JH, He L, Wang J, Du XB. A dosimetry study precisely outlining the heart substructure of left breast cancer patients using intensity-modulated radiation therapy. J Appl Clin Med Phys. 2014;15(5):4624. https://doi.org/10.1120/jacmp.v15i5.462410.1120/jacmp.v15i5.4624 Search in Google Scholar

14. Pignol JP, Keller BM, Ravi A. Doses to internal organs for various breast radiation techniques--implications on the risk of secondary cancers and cardiomyopathy. Radiat Oncol. 2011;6:5. https://doi.org/10.1186/1748-717X-6-510.1186/1748-717X-6-5 Search in Google Scholar

15. Darby SC, Ewertz M, McGale P, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987-998. https://doi.org/10.1056/NEJMoa120982510.1056/NEJMoa1209825 Search in Google Scholar

16. Sun T, Lin X, Tong Y et al. Heart and cardiac substructure dose sparing in synchronous bilateral breast radiotherapy: A dosimetric study of proton and photon radiation therapy. Front Oncol. 2020;9:1456. https://doi.org/10.3389/fonc.2019.0145610.3389/fonc.2019.01456 Search in Google Scholar

17. Cheng JC, Wu JK, Huang CM et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys. 2002;54(1):156-162. https://doi.org/10.1016/s0360-3016(02)02915-210.1016/S0360-3016(02)02915-2 Search in Google Scholar

18. Kim SJ, Lee MJ, Youn SM. Radiation therapy of synchronous bilateral breast carcinoma (SBBC) using multiple techniques. Med Dosim. 2018;43(1):55-68. https://doi.org/10.1016/j.meddos.2017.08.00310.1016/j.meddos.2017.08.00328988893 Search in Google Scholar

19. Boman E, Rossi M, Kapanen M. The robustness of dual isocenter VMAT radiation therapy for bilateral lymph node positive breast cancer. Phys Med. 2017 Dec;44:11-17. https://doi.org/10.1016/j.ejmp.2017.11.00610.1016/j.ejmp.2017.11.00629254586 Search in Google Scholar

20. Yavas G, Yavas C, Acar H. Dosimetric comparison of whole breast radiotherapy using field in field and conformal radiotherapy techniques in early stage breast cancer. Int J Radiat Res. 2012;10:131-138. Search in Google Scholar

21. Ohashi T, Takeda A, Shigematsu N, et al. Dose distribution analysis of axillary lymph nodes for three-dimensional conformal radiotherapy with a field-in-field technique for breast cancer. Int J Radiat Oncol Biol Phys. 2009;73(1):80-87. https://doi.org/10.1016/j.ijrobp.2008.04.003.10.1016/j.ijrobp.2008.04.00318602764 Search in Google Scholar

22. Onal C, Sonmez A, Arslan G, et al. Dosimetric comparison of the field-in-field technique and tangential wedged beams for breast irradiation. Jap J Radiol. 2012;30(3):218-226. https://doi.org/10.1007/s11604-011-0034-710.1007/s11604-011-0034-722183829 Search in Google Scholar

23. Tanaka H, Hayashi S, Hoshi H. Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy. J Radiat Res. 2014;55(4):769-773. https://doi.org/10.1093/jrr/rrt23310.1093/jrr/rrt233409999124536020 Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics