À propos de cet article

Citez

1. Kalender WA. X-ray computed tomography. Phys Med Biol. 2006;51:29-43. https://doi.org/10.1088/0031-9155/51/13/R0310.1088/0031-9155/51/13/R0316790909 Search in Google Scholar

2. Seeram, E. Computed tomography: Physical principles, clinical applications, and quality control. Elsevier. Fourth edition. 2016. Search in Google Scholar

3. Ebrahiminia A, Asadinezhad M, Mohammadi F, Khoshgard K. Eye lens dose optimization through gantry tilting in brain ct scan: the potential effect of the radiological technologists’ training. Radiat Prot Dosimetry. 2020;189:527-33. https://doi.org/10.1093/rpd/ncaa07310.1093/rpd/ncaa07332472135 Search in Google Scholar

4. Anam C, Fujibuchi T, Haryanto F, et al. An evaluation of computed tomography dose index measurements using a pencil ionisation chamber and small detectors. J Radiol Prot. 2019;39:112-24. https://doi.org/10.1088/1361-6498/aaf2b410.1088/1361-6498/aaf2b430524057 Search in Google Scholar

5. Anam C, Fujibuchi T, Toyoda T. et al. The impact of head miscentering on the eye lens dose in CT scanning: Phantoms study. J Phys Conf Ser. 2019;1204:012022. https://doi.org/10.1088/1742-6596/1204/1/01202210.1088/1742-6596/1204/1/012022 Search in Google Scholar

6. International Commission on Radiological Protection. Annals of the ICRP Annals of the ICRP Annals of the ICRP. ICRP Publication 92, annals of ICRP 28. 2003. Search in Google Scholar

7. Ishizaka H, Naka M, Nagase H, et al. A new brain CT reference line:the lower eyelid to the inner occipital base line closely parallels the Talairach–Tournoux line. Acta Radiologica Open. 2020;9:1-6. https://doi.org/10.1177/205846012090240610.1177/2058460120902406698597132047655 Search in Google Scholar

8. Nishizawa K, Maruyama T, Takayama M, Okada M, Hachiya J, Furuya Y. Determinations of organ doses and effective dose equivalents from computed tomographic examination. Br J Radiol. 1991;64:20-8. https://doi.org/10.1259/0007-1285-64-757-2010.1259/0007-1285-64-757-201998834 Search in Google Scholar

9. Maclennan AC. Radiation dose to the lens from CT brain scans in general radiology departments. Br J Radiol. 1995;68:219. https://doi.org/10.1259/0007-1285-68-806-21910.1259/0007-1285-68-806-2197735757 Search in Google Scholar

10. Poon R, Badawy MK. Radiation dose and risk to the lens of the eye during CT examinations of the brain. J Med Imaging Radiat Oncol. 2019;63:786-94. https://doi.org/10.1111/1754-9485.1295010.1111/1754-9485.1295031520467 Search in Google Scholar

11. Nikupaavo U, Kaasalainen T, Reijonen V, Ahonen SM, Kortesniemi M. Lens dose in routine head CT: Comparison of different optimization methods with anthropomorphic phantoms. Am J Roentgenol. 2015;204:117-23. https://doi.org/10.2214/AJR.14.1276310.2214/AJR.14.1276325539246 Search in Google Scholar

12. Fung KKL, Choi KHW, Hom H. Lens dose reduction in paediatric ct brain scan using the supra-orbitomeatal baseline technique. ECR 2005. 2005. https://doi.org/10.1594/ECR05/C-0994 Search in Google Scholar

13. Parsi M, Sohrabi M, Mianji F, Paydar R. Gantry angulation effects on CT dose along the z-axis direction in head examinations. Radiat Prot Dosimetry. 2017;177:458-65. https://doi.org/10.1093/rpd/ncx06410.1093/rpd/ncx06428499013 Search in Google Scholar

14. Ali STM, Hamad MM, Ayad CE, Abdalla EA, Ahmed AS. Evaluation of the technical specifications of computerized tomography scanners in Jazan. Sudan Med Monit. 2013;8:159-66. https://doi.org/10.4103/1858-5000.13261110.4103/1858-5000.132611 Search in Google Scholar

15 Abou-Elenein HS. Quality assurance for computed-tomography simulator: In home Z-phantom for mechanical tests of the couch and the gantry. Chinese-German J Clin Oncol. 2013;12(5):237-242. 2013. https://doi.org/10.1007/s10330-012-1133-310.1007/s10330-012-1133-3 Search in Google Scholar

16. Diagnostic X-Ray Imaging Committee. Specification and Acceptance Testing of Computed Tomography Scanners. AAPM Report No. 39. New York: the American Institute of Physics, Inc. 1993. Search in Google Scholar

17. Sharma DS, Sharma SD, Sanu KK, Saju S, Deshpande DD, Kannan S. Performance evaluation of a dedicated computed tomography scanner used for virtual simulation using in-house fabricated CT phantoms. J Med Phys. 2006;31:28-35. https://doi.org/10.4103/0971-6203.2566710.4103/0971-6203.25667300389121206637 Search in Google Scholar

18. American Association of Physicists in Medicine. Specification and acceptance testing of computed tomography scanners. AAPM Report No. 39. 1993. Search in Google Scholar

19. Anam C, Haryanto F, Widita R, Arif I. Automated Estimation of Patient’s Size from 3D Image of Patient for Size Specific Dose Estimates (SSDE). Adv Sci Eng Med. 2015;7:892-6. https://doi.org/10.1166/asem.2015.178010.1166/asem.2015.1780 Search in Google Scholar

20. Anam C. Haryanto F, Widita R, Arif I, Dougherty G. A fully automated calculation of size-specific dose estimates (SSDE) in thoracic and head CT examinations. J Phys Conf Ser. 2016;694:012030. https://doi.org/10.1088/1742-6596/694/1/01203010.1088/1742-6596/694/1/012030 Search in Google Scholar

21. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water-equivalent diameter (DW) based on AAPM task group 220. J Appl Clin Med Phys. 2016;17:32033. https://doi.org/10.1120/jacmp.v17i4.617110.1120/jacmp.v17i4.6171569005927455491 Search in Google Scholar

22. Boulter DJ, Rumboldt Z, Bonaldi G, Muto M, Cianfoni A. Tilting the gantry for CT-guided spine procedures. Radiol Medica. 2014;119:750-7. https://doi.org/10.1007/s11547-013-0344-110.1007/s11547-013-0344-124531889 Search in Google Scholar

23. IAEA. Quality assurance programme for computed tomography: Diagnostic and therapy applications. IAEA Huma. Health Series No. 19. 2012. Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics