Accès libre

Effect of Changing Phantom Thickness on Helical Radiotherapy Plan: Dosimetric Analysis

   | 18 juin 2019
À propos de cet article

Citez

[1] Dubben HH, Thames HD, Beck-Bornholdt HP. Tumor volume: a basic and specific response predictor in radiotherapy. Radiother Oncol. 1998;47(2):167-74.10.1016/S0167-8140(97)00215-6Search in Google Scholar

[2] Zhao L, Wan Q, Zhou Y, et al. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol. 2011;98(1):23-7.10.1016/j.radonc.2010.10.00921040992Search in Google Scholar

[3] Joon-Young J, Dae Hyun K, Cheon Woong C, et al. Analysis of Changes in Skin Dose During Weight Loss when Tomotherapy of Nasopharynx Cancer. Journal of the Korean Magnetics Society. 2016;26(3):99-104.10.4283/JKMS.2016.26.3.099Search in Google Scholar

[4] Yan D, Lockman D, Martinez A, et al. Computed tomography guided management of interfractional patient variation. Semin Radiat Oncol. 2005;15(3):168-79.10.1016/j.semradonc.2005.01.00715983942Search in Google Scholar

[5] Piotrowski T, Kazmierska J, Sokołowski A, et al. Impact of the spinal cord position uncertainty on the dose received during head and neck helical tomotherapy. J Med Imaging Radiat Oncol. 2013;57(4):503-511.10.1111/1754-9485.1205623870352Search in Google Scholar

[6] Piotrowski T, Ryczkowski A, Adamczyk M, Jodda A. Estimation of the planning organ at risk volume for the lenses during radiation therapy for nasal cavity and paranasal sinus cancer. J Med Imaging Radiat Oncol. 2015;59(6):743-750.10.1111/1754-9485.1234426238510Search in Google Scholar

[7] Han C, Chen YJ, Liu A, et al.. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1256-1262.10.1016/j.ijrobp.2007.10.06718234431Search in Google Scholar

[8] Nishi T, Nishimura Y, Shibata T, et al. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106(1):85-89.10.1016/j.radonc.2012.11.00523337058Search in Google Scholar

[9] Woodford C, Yartsev S, Dar AR, et al. Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol Phys. 2007;69(4):1316-22.10.1016/j.ijrobp.2007.07.236917967322Search in Google Scholar

[10] Chen C, Fei Z, Chen L, et al. Will weight loss cause significant dosimetric changes of target volumes and organs at risk in nasopharyngeal carcinoma treated with Intensity-Modulated Radiation Therapy? Med Dosim. 2014;39(1):34-37.10.1016/j.meddos.2013.09.00224140235Search in Google Scholar

[11] Beltran M, Ramos M, Rovira JJ, et al. Dose variations in tumor volumes and organs at risk during IMRT for head and neck cancer. J Appl Clin Med Phys. 2012;13(6):3723.10.1120/jacmp.v13i6.3723571854923149770Search in Google Scholar

[12] Bhide SA, Davies M, Burke K, et al. Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: A prospective observational study. Int J Radiat Oncol Biol Phys. 2010;76(5):1360-8.10.1016/j.ijrobp.2009.04.00520338474Search in Google Scholar

[13] Tariq I, Chen T, Kirkby NF, Jena R. Modelling and Bayesian adaptive prediction of individual patients’ tumour volume change during radiotherapy. Phys Med Biol. 2016;61(5):2145-61.10.1088/0031-9155/61/5/214526907478Search in Google Scholar

[14] Fenwick JD, Tomé WA, Kissick MW, Mackie TR. Modelling simple helically delivered dose distributions. Phys Med Biol. 2005; 50(7):1505-17.10.1088/0031-9155/50/7/01315798340Search in Google Scholar

[15] Schirm M, Yartsev S, Bauman G, et al. Consistency check of planned adaptive option on helical tomotherapy. Technol Cancer Res Treat. 2008;7(6):425-32.10.1177/15330346080070060319044321Search in Google Scholar

[16] Sen A, West MK. Commissioning experience and quality assurance of helical tomotherapy machines. J Med Phys. 2009;34(4):194-9.10.4103/0971-6203.56078280714020098548Search in Google Scholar

[17] Olivera GH, Shepard DM, Ruchala K et al.Tomotherapy. Van Dyk J, ed. The Modern Technology of Radiation Oncology. Madison, WI: Medical Physics Publishing, 1999:521-87.Search in Google Scholar

[18] Mackie TR. History of tomotherapy. Phys Med Biol. 2006;51(13):R427-53.10.1088/0031-9155/51/13/R2416790916Search in Google Scholar

[19] Welsh JS, Lock M, Harari PM, et al. Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy. Tech Cancer Res Treat. 2006;5:465-479.10.1177/15330346060050050316981789Search in Google Scholar

[20] Piotrowski T, Kaczmarek K, Bajon T, et al. Evaluation of Image-Guidance Strategies for Prostate Cancer. Technol Cancer Res Treat. 2014;13(6):583-591.Search in Google Scholar

[21] Yan D. Adaptive radiotherapy: merging principle into clinical practice. Semin Radiat Oncol. 2010;20(2):79-83.10.1016/j.semradonc.2009.11.00120219545Search in Google Scholar

[22] Thörnqvist S, Hysing LB, Tuomikoski L, et al. Adaptive radiotherapy strategies for pelvic tumors a systematic review ofclinical implementations. Acta Oncol.2016 Aug;55(8):943-58.10.3109/0284186X.2016.115673827055486Search in Google Scholar

[23] Surucu M, Shah KK, Roeske JC, et al. Adaptive radiotherapy for head and neck cancer implications for clinical and dosimetry outcomes. Technol Cancer Res Treat. 2017;16(2):218-223.10.1177/1533034616662165561603327502958Search in Google Scholar

[24] Yadav P, Tolakanahalli R, Rong Y, Paliwal BR. The effect and stability of MVCT images on adaptive TomoTherapy. J Appl Clin Med Phys. 2010;11(4):3229.10.1120/jacmp.v11i4.3229572039721081878Search in Google Scholar

[25] Meeks SL, Harmon JF Jr, Langen KM, et al. Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys. 2005;32(8):2673-81.10.1118/1.199028916193798Search in Google Scholar

[26] Welsh JS, Lock M, Harari PM, et al. Clinical Implementation of Adaptive Helical Tomotherapy: A Unique Approach to Image-Guided Intensity Modulated Radiotherapy Technology in Cancer Research and Treatment. Technol Cancer ResTreat. 2006;5(5):465-79.10.1177/15330346060050050316981789Search in Google Scholar

[27] Yan D, Liang J. Expected treatment dose construction and adaptive inverseplanning optimization: implementation for offline head and neck cancer adaptive radiotherapy. Med Phys. 2013;40(2):021719.10.1118/1.478865923387742Search in Google Scholar

[28] Schwartz DL. Current progress in adaptive radiation therapy for head and neckcancer. Curr Oncol Rep. 2012;14(2):139-47.10.1007/s11912-012-0221-422328127Search in Google Scholar

[29] van der Horst A, Houweling AC, van Tienhoven G, et al. Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients. J Appl Clin Med Phys. 2017;18(6):142-151.10.1002/acm2.12199568992028980445Search in Google Scholar

[30] Ren G, Xu S-P, Du L, et al. Actual Anatomical and Dosimetric Changes of Parotid Glands in Nasopharyngeal Carcinoma Patients during Intensity Modulated Radiation Therapy. BioMed Res Int. 2015;2015:670327.10.1155/2015/670327435245725793202Search in Google Scholar

[31] Duma MN, Kampfer S, Schuster T, et al. Adaptive radiotherapy for soft tissue changes during helical tomotherapy for head and neck cancer. Strahlenther Onkol. 2012;188(3):243-7.10.1007/s00066-011-0041-822294198Search in Google Scholar

[32] Ashburner MJ, Tudor S. The optimization of superficial planning target volumes (PTVs) with helical tomotherapy. J Appl Clin Med Phys. 2014;15(6):4560.10.1120/jacmp.v15i6.4560Search in Google Scholar

[33] Chow JCL, Jiang R. Comparison of dosimetric variation between prostate IMRT and VMAT due to patient’s weight loss: Patient and phantom study. Rep Pract Oncol Radiother. 2013;18(5):272-278.10.1016/j.rpor.2013.05.003386315924416564Search in Google Scholar

[34] Piotrowski T, Gintowt K, Jodda A, et al. Impact of the intra- and inter-observer variability in the delineation of parotid glands on the dose calculation during head and neck helical tomotherapy. Technol Cancer Res Treat. 2015;14(4):467-474.10.1177/1533034614600278463990626269608Search in Google Scholar

[35] Jang S, Watchman C. SU-FF-T-596: Dosimetric Impact of Anatomic Changes Due to Patient Weight Loss On TomoTherapy Plan. Med Phys. 2009;36:2661–2662.10.1118/1.3182094Search in Google Scholar

[36] Pair ML, Du W, Rojas HD, et al.. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer. Med Dosim. 2013;38(3):251-4.10.1016/j.meddos.2013.02.00423540491Search in Google Scholar

[37] Choi HS, Jo GS, Chae JP, et al. Defining the Optimal Time of Adaptive Replanning in Prostate Cancer Patients with Weight Change during Volumetric Arc Radiotherapy: A Dosimetric and Mathematical Analysis Using the Gamma Index. Computational and Mathematical Methods in Medicine. 2017;2017.10.1155/2017/4149591574832329403539Search in Google Scholar

eISSN:
1898-0309
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics