Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological ApplicationsAlexandria, Egypt
This work is licensed under the Creative Commons Attribution 4.0 International License.
Song, X. (2024). Antibacterial, antifungal, and antiviral bioactive compounds from natural products. Molecules 29(4), 825. DOI: 10.3390/molecules29040825.Search in Google Scholar
Bhattacharya, R., Sharma, P., Bose, D., Singh, M. (2024). Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agric. Biosci. 5(1), 17. DOI: 10.1186/s43170-024-00218-1.Search in Google Scholar
Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. J. Exp. Pharmacol. 15, 51–62. DOI: 10.2147/JEP.S379805.Search in Google Scholar
Eoin, L.N. (2016) Systematics: Blind dating. Nat. Plants 2(5), 16069. DOI: 10.1038/nplants.2016.69.Search in Google Scholar
Al-Alawi, R., Al-Mashiqri, J.H., Al-Nadabi, J.S.M., Al--Shihi, B.I., Baqi, Y. (2017). Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Front. Plant Sci. 8, 845. DOI: 10.3389/fpls.2017.00845.Search in Google Scholar
Chao, C.T., Krueger, R. (2007). The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. Hort Sci. 42(5), 1077–82. DOI: 10.21273/hortsci.42.5.1077.Search in Google Scholar
Boulenouar, N., Marouf, A., Cheriti, A. (2011). Antifungal activity and phytochemical screening of extracts from Phoenix dactylifera L. cultivars. Nat. Prod. Res. 25(20), 1999–2002. DOI: 10.1080/14786419.2010.536765.Search in Google Scholar
Najat A., Kahkashan P. (2012). In vitro inhibition potential of Phoenix dactylifera L. extracts on the growth of pathogenic fungi. J. Med. Plants Res. 6(6), 1083–8. DOI: 10.5897/jmpr11.1545.Search in Google Scholar
Rose, G.R.F., Howdon, J.B., Bayley, C.H. (1959). Observations on the use of copper formate as a rotproofer for cotton fabric. Text. Res. J. 29(12), 996–1005. DOI: 10.1177/004051755902901210.Search in Google Scholar
Rossmoore, H.W. (1990). The interaction of formaldehyde, isothiazolone and copper. Int. Biodeterior. 26(2–4), 225–35. DOI: 10.1016/0265-3036(90)90062-C.Search in Google Scholar
Abrams, E., Bottoms, R.R. (1956). A Copper process for prolonged microbiological protection of cellulosic fabrics by chemical modification. Text. Res. J. 26(8), 630–40, DOI: 10.1177/004051755602600808.Search in Google Scholar
Aamer, H.A., Al-Askar, A.A., Gaber, M.A., El-Tanbouly, R., Abdelkhalek, A., Behiry, S., Elsharkawy, M.M., Kowalczewski, P.Ł., El-Messeiry, S. (2023). Extraction, phytochemical characterization, and antifungal activity of Salvia rosmarinus extract. Open Chem. 21(1), 20230124. DOI: 10.1515/chem-2023-0124.Search in Google Scholar
Hammer, P.E., Evensen, K.B., Janisiewicz, W.J. (2019). Postharvest control of Botrytis cinerea infections on Cut rose flowers with pyrrolnitrin. Hort Sci. 25(9), 1139a–1139. DOI: 10.21273/hortsci.25.9.1139a.Search in Google Scholar
Fravel, D., Olivain, C., Alabouvette, C. (2003). Fusarium oxysporum and its biocontrol. New Phytol. 157(3), 493–502. DOI: 10.1046/j.1469-8137.2003.00700.x.Search in Google Scholar
Ajayi-Oyetunde, O.O., Bradley, C.A. (2018). Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathol. 67(1), 3–17. DOI: 10.1111/ppa.12733.Search in Google Scholar
Williamson, B., Tudzynski, B., Tudzynski, P., Van Kan, J.A.L. (2007). Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 8(5), 561–80. DOI: 10.1111/j.1364--3703.2007.00417.x.Search in Google Scholar
Aouadi, G., Soltani, A., Grami, L.K., Abada, M., Ben., Haouel, S., Boushih, E., Chaanbi, M., Elkahoui, S., Hajlaoui, M.R., Jemâa, J.M. Ben., Taibi, F. (2021). Chemical Investigations on Algerian Mentha rotundifolia and Myrtus communis Essential Oils and Assessment of their Insecticidal and Antifungal Activities. Int. J. Agric. Biol. 26(6), 666–80. DOI: 10.17957/IJAB/15.1881.Search in Google Scholar
Hamzah, K.A., Al-Askar, A., Kowalczewski, P., Abdelkhalek, A., Emaish, H.H., Behiry, S. (2024). A comparative study of the antifungal efficacy and phytochemical composition of date palm leaflet extracts. Open Chem. 22(1), 20240044. DOI: 10.1515/chem-2024-0044.Search in Google Scholar
Kumar, A., Shukla, R., Singh, P., Prasad, C.S., Dubey, N.K. (2008) Assessment of Thymus vulgaris L. essential oil as a safe botanical preservative against post harvest fungal infestation of food commodities. Innov. Food Sci. Emerg. Technol. 9(4), 575–80. DOI: 10.1016/j.ifset.2007.12.005.Search in Google Scholar
Dissanayake, M. (2014) Inhibitory Effect of Selected Medicinal Plant Extracts on Phytopathogenic Fungus Fusarium oxysporum (Nectriaceae) Schlecht. Emend. Snyder and Hansen. Annu. Res. Rev. Biol. 4(1), 133–42. DOI: 10.9734/arrb/2014/5777.Search in Google Scholar
Youssef, N.H., Qari, S.H., Behiry, S.I., Dessoky, E.S., El-Hallous, E.I., Elshaer, M.M., Kordy, A., Maresca, V., Abdelkhalek, A., Heflish, A.A. (2021). Antimycotoxigenic activity of beetroot extracts against Altenaria alternata mycotoxins on potato crop. Appl. Sci. 11(9), 4239. DOI: 10.3390/app11094239.Search in Google Scholar
Lengai, G.M.W., Muthomi, J.W., Mbega, E.R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. African 7, e00239. DOI: 10.1016/j.sciaf.2019.e00239.Search in Google Scholar
EL-Mously, H., Midani, M., Darwish, E.A. (2023) Date Palm Byproducts in Other Fields of Applications. Materials Horizons: From Nature to Nanomaterials, Springer, pp. 345–54. DOI:10.1007/978-981-99-0475-4_12.Search in Google Scholar
Mandal, K., Chandra Joshi, B., Dobhal, Y. (2022). Phytopharmacological Review on Date Palm (Phoenix dactylifera). Indian J. Pharm. Sci. 84(2). DOI: 10.36468/pharmaceutical--sciences.919.Search in Google Scholar
Wu, H.S., Wang, Y., Zhang, C.Y., Bao, W., Ling, N., Liu, D.Y., Shen, Q.R. (2009). Growth of in vitro Fusarium oxysporum f. sp. niveum in chemically defined media amended with gallic acid. Biol. Res. 42(3), 297–304. DOI: 10.4067/S0716-97602009000300004.Search in Google Scholar
Apolonio-Rodríguez, I., Franco-Mora, O., Salgado--Siclán, M.L., Aquino-Martínez, J.G., Apolonio-Rodríguez, I., Franco-Mora, O., Salgado-Siclán, M.L., Aquino-Martínez, J.G. (2017). In vitro inhibition of Botrytis cinerea with extracts of wild grapevine (Vitis spp.) leaves. Rev. Mex. Fitopatol. 35(2), 170–85.Search in Google Scholar
Ashmawy, N.A., Behiry, S.I., Al-Huqail, A.A., Ali, H.M., Salem, M.Z.M. (2020). Bioactivity of selected phenolic acids and hexane extracts from Bougainvilla spectabilis and Citharexylum spinosum on the growth of Pectobacterium carotovorum and Dickeya solani bacteria: An opportunity to save the environment. Processes 8(4), 482. DOI: 10.3390/PR8040482.Search in Google Scholar
Roy, S., Nuckles, E., Archbold, D.D. (2018). Effects of phenolic compounds on growth of Colletotrichum spp. in vitro. Curr. Microbiol. 75(5), 550–6. DOI: 10.1007/s00284-017-1415-7.Search in Google Scholar
Ling, N., Zhang, W., Wang, D., Mao, J., Huang, Q., Guo, S., Shen, Q. (2013). Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8(5), e63383. DOI: 10.1371/journal.pone.0063383.Search in Google Scholar
Zhang, D., Ma, Z., Kai, K., Hu, T., Bi, W., Yang, Y., Shi, W., Wang, Z., Ye, Y. (2023). Chlorogenic acid induces endoplasmic reticulum stress in Botrytis cinerea and inhibits gray mold on strawberry. Sci. Hortic. 318, 112091. DOI: 10.1016/j. scienta.2023.112091.Search in Google Scholar
Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., de la Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic. Biochem. Physiol. 140, 30–5. DOI: 10.1016/j.pestbp.2017.05.012.Search in Google Scholar
Xu, D., Deng, Y., Han, T., Jiang, L., Xi, P., Wang, Q., Jiang, Z., Gao, L. (2018). In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes. Postharvest Biol. Technol. 139, 106–14. DOI: 10.1016/j.postharvbio.2017.08.019.Search in Google Scholar
Roca-Couso, R., Flores-Félix, J.D., Rivas, R. (2021). Mechanisms of action of microbial biocontrol agents against botrytis cinerea. J. Fungi 7(12), 1045. DOI: 10.3390/jof7121045.Search in Google Scholar
Mendoza, L., Yañez, K., Vivanco, M., Melo, R., Cotoras, M. (2013). Characterization of extracts from winery by-products with antifungal activity against Botrytis cinerea. Ind. Crops Prod. 43(1), 360–4. DOI: 10.1016/j.indcrop.2012.07.048.Search in Google Scholar
Hapon, M.V., Boiteux, J.J., Fernández, M.A., Lucero, G., Silva, M.F., Pizzuolo, P.H. (2017). Effect of phenolic compounds present in argentinian plant extracts on mycelial growth of the plant pathogen Botrytis cinerea pers. Phyton-International J. Exp. Bot. 86, 270–7. DOI: 10.32604/phyton.2017.86.270.Search in Google Scholar
Azouaoui, T., Gaceb, A., Rahmania, T. (2013). The Effect in vitro of flavonoid aglycones extracts from roots of date palm cultivars on Fusarium oxysporum F. Sp. albedinis. Int. J. Agric. Eng. 7(9), 739–41.Search in Google Scholar
Kettout, T.A.A., Gaceb-Terrak, R., Boucenna-Mouzali, B., Rahmania, F. (2022). In vitro investigation of Fusarium oxysporum f. sp. albedinis under flavonic aglycones isolated from date palm leaves (Phoenix dactylifera L.). Analele Univ. Din Oradea, Fasc. Biol. 29(1), 54–60.Search in Google Scholar
Ahmad, H., Matsubara, Y. (2020). Antifungal effect of Lamiaceae herb water extracts against Fusarium root rot in Asparagus. J. Plant Dis. Prot. 127(2), 229–36. DOI: 10.1007/s41348-019-00293-x.Search in Google Scholar
Zhang, M., Wang, D., Gao, X., Yue, Z., Zhou, H. (2020). Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci. Hortic. 268, 109348. DOI: 10.1016/j.scienta.2020.109348.Search in Google Scholar
Bilska, K., Stuper-Szablewska, K., Kulik, T., Buśko, M., Załuski, D., Jurczak, S., Perkowski, J. (2018). Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. Graminearum sensu stricto via exposure to flavonoids. Toxins 10(3), 110. DOI: 10.3390/toxins10030110.Search in Google Scholar
Boucenna-Mouzali, B., Gaceb-Terrak, R., Azouaoui-Ait Kettout, T., Touam, D., Rahmania, F. (2021). Mobilization of trans-cinnamic acid, precursor of lignins in date palm roots over a compatible interaction with the pathogenic agent of bayoud disease, Fusarium oxysporum f. sp. albedinis. J. Fundam. Appl. Sci. 13(3), 1399–410. DOI: 10.4314/jfas.v13i3.17.Search in Google Scholar
Ain, Q.U., Asad, S., Ahad, K., Safdar, M.N., Jamal, A. (2022). Antimicrobial Activity of Pinus wallachiana leaf extracts against Fusarium oxysporum f. sp. cubense and analysis of its fractions by HPLC. Pathogens 11(3), 347. DOI: 10.3390/pathogens11030347.Search in Google Scholar
Nawrocka, J., Szczech, M., Małolepsza, U. (2018). Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Prot. Sci. 54(1), 17–23. DOI: 10.17221/126/2016-PPS.Search in Google Scholar
Yu, S., Teng, C., Liang, J., Song, T., Dong, L., Bai, X., Jin, Y., Qu, J. (2017). Characterization of siderophore produced by Pseudomonas syringae BAF.1 and its inhibitory effects on spore germination and mycelium morphology of Fusarium oxysporum. J. Microbiol. 55(11), 877–84. DOI: 10.1007/s12275-017-7191-z.Search in Google Scholar
Jiang, S., Wang, C., Shu, C., Huang, Y., Yang, M., Zhou, E. (2018). Effects of catechol on growth, antioxidant enzyme activities and melanin biosynthesis gene expression of Rhizoctonia solani AG-1 IA. Can. J. Plant Pathol. 40(2), 220–8. DOI: 10.1080/07060661.2018.1437775.Search in Google Scholar
Al-Luhaiby, A.A.K., Hassan, A.K. (2020). Evaluation the ability of some organic compounds is protecting bean seedling against infection with Rhizoctonia solani. Plant Arch. 20(1), 86–90.Search in Google Scholar
Yang, J., Chen, Y.Z., Yu-Xuan, W., Tao, L., Zhang, Y. Di., Wang, S.R., Zhang, G.C., Zhang, J. (2021). Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pestic. Biochem. Physiol. 175, 104859. DOI: 10.1016/j.pestbp.2021.104859.Search in Google Scholar
Wang, J., Wang, J., Bughio, M.A., Zou, Y., Prodi, A., Baffoni, L., Di Gioia, D. (2020). Flavonoid levels rather than soil nutrients is linked with Fusarium community in the soybean [Glycine max (L.) Merr.] rhizosphere under consecutive monoculture. Plant Soil 450(1–2), 201–15. DOI: 10.1007/s11104-020-04496-2.Search in Google Scholar
Safari, Z.S., Ding, P., Nakasha, J.J., Yusoff, S.F. (2021). Controlling Fusarium oxysporum tomato fruit rot under tropical condition using both chitosan and vanillin. Coatings 11(3), 367. DOI: 10.3390/coatings11030367.Search in Google Scholar
Shalapy, N.M., Kang, W. (2022). Fusarium oxysporum & Fusarium solani: identification, characterization, and differentiation the fungal phenolic profiles by HPLC and the fungal lipid profiles by GC-MS. J. Food Qual. 2022, DOI: 10.1155/2022/4141480.Search in Google Scholar
Guo, Y., Lv, J., Zhao, Q., Dong, Y., Dong, K. (2020). Cinnamic acid increased the incidence of Fusarium wilt by increasing the pathogenicity of Fusarium oxysporum and reducing the physiological and biochemical resistance of faba bean, which was alleviated by intercropping with wheat. Front. Plant Sci. 11, 608389. DOI: 10.3389/fpls.2020.608389.Search in Google Scholar
Cui, Y., Liu, H.G., Pan, H.Y., Yan, S.M., Qi, Z.X., Zhao, X.L., Luo, D.Q. (2022). Synthesis and antifungal activity of polyphenol ether derivatives against plant pathogenic fungi in vitro and in vivo. Rev. Roum. Chim. 67(6–7), 373–83. DOI: 10.33224/rrch.2022.67.6-7.04.Search in Google Scholar
Guimarães, A., Venâncio, A. (2022). The potential of fatty acids and their derivatives as antifungal agents: a review. Toxins 14(3), 188. DOI: 10.3390/toxins14030188.Search in Google Scholar
Amin, E., Tabanca, N., Wedge, D.E. (2014). Bioautography guided antifungal investigation of Adhatoda Vasica (Nees). World J. Pharm. Res. 3(2), 1815–23.Search in Google Scholar
Fayyaz, M., Akbar, M., Iqbal, M.S., Ahsan, T., Yuanhua, W., Khalil, T. (2021). Characterization of antifungal molecules of Calotropis procera against Fusarium oxysporum, the causal agent of Fusarium wilt in crops. Fresenius Environ. Bull. 30(06B), 1–7.Search in Google Scholar
Do, T.H.T., Pham, T.H., Pham, G. V., Vo, K.A., Nguyen, T.T.T., Vu, D.H., Nguyen, X.C., Vu, V.H., Nghiem, D.T., Choi, G.J., Nguyen Ngoc, H., Nguyen, H.T., Trinh, X.H., Le Dang, Q. (2022). Potential use of extracts and active constituent from Desmodium sequax to control fungal plant diseases. Int. J. Agric. Technol. 18(2), 489–502.Search in Google Scholar
Gaceb-Terrak, R., Rahmania, F. (2010). Analysis of lipids and others volatile compounds of Deglet Nour, cultivar of date palm (Phoenix dactylifera L.), by gas chromatography coupled to mass spectrometry. Acta Bot. Gall. 157(1), 127.Search in Google Scholar
Haque, E., Irfan, S., Kamil, M., Sheikh, S., Hasan, A., Ahmad, A., Lakshmi, V., Nazir, A., Mir, S.S. (2016). Terpenoids with antifungal activity trigger mitochondrial dysfunction in Saccharomyces cerevisiae. Microbiol. (Russian Fed.), 85(4), 436–43. DOI: 10.1134/S0026261716040093.Search in Google Scholar
Jasso de Rodríguez, D., Trejo-González, F.A., Rodríguez-García, R., Díaz-Jimenez, M.L.V., Sáenz-Galindo, A., Hernández-Castillo, F.D., Villarreal-Quintanilla, J.A., Peña-Ramos, F.M. (2015). Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Ind. Crops Prod. 75, 150–8. DOI: 10.1016/j.indcrop.2015.05.048.Search in Google Scholar
Ali, S.A., Abdelmoaty, H.S., Ramadan, H.H., Salman, Y.B. (2024). The endophytic fungus epicoccum nigrum: isolation, molecular identification and study its antifungal activity against phytopathogenic fungus Fusarium Solani. J. Microbiol. Biotechnol. Food Sci. 13(5), e10093–e10093. DOI: 10.55251/jmbfs.10093.Search in Google Scholar