Accès libre

Degree of complexation of microelement ions by biodegradable IDHA chelator in water and simulated fertilization environment

À propos de cet article

Citez

Clemens, F.F., Whitehurst, B.M. & Whitehurst, G.B. (1990). Chelates in agriculture. Fertiliser Res., 25, 127–131. DOI:10.1007/BF01095092. Search in Google Scholar

Cieślak-Golonka, M., Starosta, J. & Wasielewski, M. (2010). Wstęp do chemii koordynacyjnej (Introduction to Coordination Chemistry). Poland: Wyd. PWN. (in Polish) Search in Google Scholar

Prete, P., Fiorentino, A., Rizzo, L., Proto, A. & Cucciniello, R. (2021). Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (photo-) Fenton process at neutral pH. Curr. Opin. Green Sustain. Chem. 28, 100451-. DOI: 10.1016/j.cogsc.2021.100451. Search in Google Scholar

Svanedal, I., Boija, S., Almesåker, A., Persson, G., Andersson, F., Hedenström, E., Bylund, D., Norgren, M. & Edlund, H. (2014). Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes. Langmuir, 30:16, 4605–4612. DOI: 10.1021/la5002336. Search in Google Scholar

Casconea, S., Apicella, P., Caccavo, D., Lamberti, G.& Barba, A.A. (2015). Optimization of chelates production process for agri-cultural administration of inorganic micronutrients. Chem. Eng. Trans. 44, 217–222. DOI: 10.3303/CET1544037. Search in Google Scholar

López-Rayo, S., Correas, C. & Lucena, J.J. (2012). Novel chelating agents as manganese and zinc fertilisers: Characterisation, theoretical speciation and stability in solution. Chem. Speciat. Bioavailab. 24, 147–158. DOI: 10.3184/095422912X13409631969915. Search in Google Scholar

Wu, S.H. & Li, L.M. (2008). Research on Compound of Amino Acid Microelement Chelate and Determination of Chelate Ratio. Feed. Ind., 29, 11–12. DOI: 10.3969/j.issn.1001-991X.2008.16.003. Search in Google Scholar

Knepper, T.P. (2003). Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. T. Anal. Chem., 22:10, 708–724. DOI: 10.1016/S0165-9936(03)01008-2. Search in Google Scholar

Nowack, B., Xue, H. & Sigg, L. (1997). Influence of natural and anthropogenic ligands on metal transport during infiltration of river water to groundwater. Environ. Sci. Technol., 31:3, 866–872. DOI: 10.1021/es960556f. Search in Google Scholar

Schmidt, C.K. & Brauch, H. (2004). Impact of amino-polycarboxylates on aquatic organisms and eutrophication: overview of available data. Environ. Toxic., 19:6, 620–637. DOI: 10.1002/tox.20071. Search in Google Scholar

Bucheli-Witschel, M. & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev., 25, 69–106. DOI: 10.1111/j.1574-6976.2001.tb00572.x. Search in Google Scholar

Knepper, T.P., Werner, A. & Bogenschultz, G. (2005). Degradation of synthetic chelating agents in surface and waste water by ion chromatography-mass spectrometry. J. Chromatogr. A. 1085, 240–246. DOI: 10.1016/j.chroma.2005.06.045. Search in Google Scholar

Nowack, B. & VanBriesen, J.M. (2005). Chelating agents in the environment. Biogeochem. of chelating agents ACS Symp. (pp. 1-18). American Chemical Society: Washington, DC. Search in Google Scholar

Evangelou, M.W.H., Ebel, M. & Scheaffer, A. (2007). Chelate assisted phytoextraction of heavy metals form soil. Effect, mechanism, tovicity, and fate of chelating agents. Chemo-sphere. 68, 989–1003. DOI: 10.1016/j.chemosphere.2007.01.062. Search in Google Scholar

Nowack, B. (2002). Environmental chemistry of aminopolycarboxylate chelating agents. Envi. Sci. Technol., 36:19, 4009–4016. DOI: 10.1021/es025683s. Search in Google Scholar

Hoffmann, J. & Hoffmann, K. (2006). Nawozy mikroelementowe (Micronutrient fertilizers). Przem. Chem., 85(8-9), 827–830. (in Polish) Search in Google Scholar

Finck, A. (1982). Fertilizers and Fertilization. Introduction and Practical Guide to Crop Fertilization. USA: Verlag Chemie. Search in Google Scholar

Gangloff, W.J., Westfall, D.G., Peterson, G.A., Mortvedt, J.J. (2006). Mobility of organic and inorganic zinc fertilizers in soils. Commun. Soil Sci. Plant Anal., 37, 199–209. DOI: 10.1080/00103620500403200. Search in Google Scholar

Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products. Search in Google Scholar

Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H.,. Abadía, A., Álvarez-Fernández, A., López-Millán, A. (2011). Towards a knowledge-based correction of iron chlorosis. Plant Phys. Biochem., 49, 471–482. DOI: 10.1016/j. plaphy.2011.01.026. Search in Google Scholar

Czuba, R. & Szukalski, H. (1973). Mikronawozy i ich zastosowanie (Microfertilizers and their use) Poland: Państwowe Wydaw. Rolnicze i Leśne. (in Polish) Search in Google Scholar

Borowiec, M., Hoffmann, K. & Hoffmann, J. (2009). The determination of the degree of zinc complexation by chelating agents with differential pulse voltammetr. Intern. J. Environ. Anal. Chem., 89(8), 717–725. DOI: 10.1080/03067310802691672.1 Search in Google Scholar

Nortemann, B. (1991). Biodegradation of EDTA. Appl. Microbiol. Biotechnol., 51, 751–759. DOI: 10.1007/s002530051458. Search in Google Scholar

Pinto, I.S.S., Neto, I.F.F. & Soaes, H.M.V. (2014). Biodegradable chelating agents for industrial, domestic and agriculture application-a review. Environ. Sci. Pollut. Res., 21, 11893–11906. DOI: 10.1007/s11356-014-2592-6. Search in Google Scholar

Sylwester, E. (2001). Effect of EDTA on plutonium migration. J. Radioanal. Nuc. Chem., 250, 47–53. DOI: 10.1023/A:1013260029269. Search in Google Scholar

Spearot, R.M. & Peck, J.V. (1984). Recovery process of complex copper-bearing rinse waters. Environ. 3, 123–128. DOI: 10.1002/ep.670030214. Search in Google Scholar

Belly, R.T., Lauff, J.J. & Goodhue, C.T. (1975). Degradation of ethylenediaminetetraacetic acid by microbial population froman aerated lagoon. Appl. Microbiol., 29, 787–794. DOI: 10.1128/am.29.6.787-794.1975. Search in Google Scholar

Nowack, B., Kari, F.G. & Krüger, H.G. (2001). The remobilization of metals from iron oxides and sediments by metal-EDTA complexes. Water, Air, Soil Poll., 125, 243–257. DOI: 10.1023/A:1005296312509. Search in Google Scholar

Metsärinne, S., Ronkainen, E., Tuhkanen, T., Aksela, R. & Sillanpää, M. (2007). Biodegradation of novel amino acid derivatives suitable for complexing agents in pulp bleaching applications. Sci. Total Environ., 377, 45–51. DOI: 10.1016/j. scitotenv.2007.01.097. Search in Google Scholar

Klem-Marciniak, E., Hoffmann, K., Hoffmann, J. (2018). The aerobic biodegradation of EDDHA and EDDHSA in water under the static test conditions, Desal. Water Treat. 134, 1–6. DOI: 10.5004/dwt.2018.22280. Search in Google Scholar

Klem-Marciniak, E., Hoffmann, K., Hoffmann, J. & Porwoł, M. (2017). Badania biodegradacji chelatorów nawozowych w środowisku wodnym w warunkach testu kinetycznego. Przem. Chem., 96(11), 2253–2255. DOI: 10.15199/62.2017.11.7. Search in Google Scholar

Hartman, J., Woodbury, R. (1994). U.S. Patent No. 5362412. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

Groth, T. (1995). U.S. Patent No. 6107518. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

Dean, F. (2007). U.S. Patent No. 7166688. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

Cokesa, Z., Knackmuss, H. & Rieger, P. (2004). Bio-degradation of all stereoisomers of the EDTA substitute iminodisuccinate by Agrobacterium tumefaciens BY6 requires an epimerase and a stereoselective C-N lyase. Appl. Environ. Microbiol., 70, 7, 3941–3947. DOI: 10.1128/AEM.70.7.3941-3947.2004. Search in Google Scholar

Reinecke, F., Groth, T., Heise, K., Joentgen, W. & Muller, N. (2000). A. Steinbuchel, Isolation and characterization of an Achromobacter xylosoxidans strain B3 and other bacteria capable to degrade the synthetic chelating agent iminodisuccinate. FEMS Microbiology Letters. 188, 41–46. DOI: 10.1111/j.1574-6968.2000.tb09166.x. Search in Google Scholar

Cokesa, Z., Lakner, S., Knackmuss, H. & Rieger, P. (2004). A stereoselective carbon-nitrogen lyase from Ralstonia sp. SLRS7 cleaves two of three isomers of iminodisuccinate. Biode-gradation. 15, 229–239. DOI: 10.1023/b:biod.0000042903.04718. f6. Search in Google Scholar

Villen, M., Garcia-Arsuaga, A. & Lucena, J.J. (2007). Potential use of biodegradable chelate N-(1,2-Dicarboxyethyl)- D,L-aspartic acid/Fe3+ as an Fe fertilizer. J. Agric. Food Chem., 55, 402–407. DOI: 10.1021/jf062471w. Search in Google Scholar

Kołodyńska, D. (2009). Iminodisuccinic acid as a new complexing agent for removal of heavy metal ions from industrial effluents. Chem. Eng. J., 152, 277–28. DOI: 10.1016/j. cej.2009.05.002. Search in Google Scholar

Nawrocki, A., Stefaniak, F., Mrozek-Niecko, A. & Olszewski, R. (2013). U.S. Patent No. 8431734. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar

Klem-Marciniak, E., Huculak-Mączka, M., Hoffmann, J., & Hoffmann, K. (2020). Badania stopnia skompleksowania jonów cynku przez wybrane czynniki chelatujące (Studies of the degree of complexation of zinc ions by selected chelating agents). Przem. Chem., 99(8), 1218–1221. DOI: 10.15199/62.2020.8.21. (in Polish) Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering