Accès libre

Numerical simulation and improvement of combustor structure in 3D printed sand recycling system

À propos de cet article

Citez

Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T. Q. & Hui, D. (2018). Additive manufacturing (3D .printing): A review of materials, methods, applications and challenges. Comp. Part B: Engin., 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012. Search in Google Scholar

Upadhyay, M., Sivarupan, T. & El Mansori, M. (2017) 3D printing for rapid sand casting—A review. J. Manufac. Proc. 29, 211–220. DOI: 10.1016/j.jmapro.2017.07.017. Search in Google Scholar

Walker, J., Harris, E., Lynagh, C., Beck, A., Lonardo, R., Vuksanovich, B., Thiel, J., Rogers, K., Conner, B. & MacDonald, E. (2018) 3D Printed Smart Molds for Sand Casting. Internat. J. Metalc., 12(4), 785–796. DOI: 10.1007/s40962-018-0211-x. Search in Google Scholar

C. Hull., M. Feygin., Y. Baron., R. Sanders., E. Sachs., A.Lightman. & T. Wohlers. (1995). Rapid prototyping:current technology and. Rapid Prototyp. J., 1, 11–19. Search in Google Scholar

Wang, J., Sama, S.R. & Manogharan, G. (2018). Re-Thinking Design Methodology for Castings: 3D Sand-Printing and Topology Optimization. Internat. J. Metalc., 13(1), 2–17. DOI: 10.1007/s40962-018-0229-0. Search in Google Scholar

Ying-Min, L., Tian-Shu, W. & Wei-Hua, L. (2018). Research on regeneration methods of animal glue waste sand for foundry. R Soc. Open Sci., 5(5), 172270. DOI: 10.1098/rsos.172270. Search in Google Scholar

Andrade, R.M., Cava, S., Silva, S.N., Soledade, L.E.B., Rossi, C.C., Roberto Leite, E., Paskocimas, C.A., Varela, J.A. & Longo, E. (2005). Foundry sand recycling in the troughs of blast furnaces: a technical note. J. Mat. Proces. Technol., 159(1), 125–134. DOI: 10.1016/j.jmatprotec.2003.10.021. Search in Google Scholar

Khan, M.M., Singh, M., Mahajani, S.M., Jadhav, G.N. & Mandre, S. (2018). Reclamation of used green sand in small scale foundries. J. Mat. Proces. Technol., 255, 559–569. DOI: 10.1016/j.jmatprotec.2018.01.005. Search in Google Scholar

Lucarz, M. (2015). Setting temperature for thermal reclamation of used moulding sands on the basis of thermal analysis. METALURGIJA 54(2), 319–322. Search in Google Scholar

Lucarz, M. (2015). Thermal reclamation of the used moulding sands. METALURGIJA 54(1), 109–112. Search in Google Scholar

Łucarz, M., Grabowska, B. & Grabowski, G. (2014). Determination of Parameters of the Moulding Sand Reclamation Process, on the Thermal Analysis Bases. Arch. Metal. Mat., 59(3), 1023–1027. DOI: 10.2478/amm-2014-0171. Search in Google Scholar

Łucarz, M. (2013). The Influence of The Configuration of Operating Parameters of a Machine for Thermal Reclamation on the Efficiency of Reclamation Process. Arch. Metal. Mater., 58(3), 923–926. DOI: 10.2478/amm-2013-0102. Search in Google Scholar

Lanza, A., Islam, M.A. & de Lasa, H. (2016). CPFD modeling and experimental validation of gas–solid flow in a down flow reactor. Comp. & Chem. Engin., 90, 79–93. DOI: 10.1016/j.compchemeng.2016.04.007. Search in Google Scholar

Chen, C., Werther, J., Heinrich, S., Qi, H.-Y. & Hartge, E.-U. (2013).CPFD simulation of circulating fluidized bed risers. Powder Technol., 235, 238–247. DOI: 10.1016/j. powtec.2012.10.014. Search in Google Scholar

Snider, D.M., O’Rourke, P.J. & Andrews, M.J. Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows. Internat. J. Multiphase Flow., 24,(8), 1359–1382. Search in Google Scholar

Snider, D.M. (2001). An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. J. Comput. Physics., 170(2), 523–549. DOI: 10.1006/jcph.2001.6747. Search in Google Scholar

Abbasi, A., Ege, P.E. & de Lasa, H.I. (2011). CPFD simulation of a fast fluidized bed steam coal gasifier feeding section. Chem. Engin. J., 174(1), 341–350. DOI: 10.1016/j. cej.2011.07.085. Search in Google Scholar

Lan, X., Shi, X., Zhang, Y., Wang, Y., Xu, C. & Gao, J. (2013). Solids Back-mixing Behavior and Effect of the Mesoscale Structure in CFB Risers. Ind. & Engin. Chem. Res., 52(34), 11888–11896. DOI: 10.1021/ie3034448. Search in Google Scholar

Snider, D.M. (2007). Three fundamental granular flow experiments and CPFD predictions. Powder Technol., 176(1), 36–46. DOI: 10.1016/j.powtec.2007.01.032. Search in Google Scholar

Zhao, P., O’Rourke, P.J. & Snider, D. (2009). Three-dimensional simulation of liquid injection, film formation and transport, in fluidized beds. Particuology 7(5), 337–346. DOI: 10.1016/j.partic.2009.07.002. Search in Google Scholar

Snider, D. & Banerjee, S. (2010). Heterogeneous gas chemistry in the CPFD Eulerian–Lagrangian numerical scheme (ozone decomposition). Powder Technol., 199(1), 100–106. DOI: 10.1016/j.powtec.2009.04.023. Search in Google Scholar

Karimipour, S. & Pugsley, T. (2012). Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles. Powder Technol., 220, 63–69. DOI: 10.1016/j.powtec.2011.09.026. Search in Google Scholar

Nakhaei, M., Hessel, C.E., Wu, H., Grévain, D., Zakrzewski, S., Jensen, L.S., Glarborg, P. & Dam-Johansen, K. (2018). Experimental and CPFD study of gas–solid flow in a cold pilot calciner. Powder Technol., 340, 99–115. DOI: 10.1016/j. powtec.2018.09.008. Search in Google Scholar

Liu, H., Li, J. & Wang, Q. (2017). Simulation of gas–solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model. Powder Technol., 321, 132–142. DOI: 10.1016/j.powtec.2017.07.040. Search in Google Scholar

Shi, X., Wu, Y., Lan, X., Liu, F. & Gao, J. (2015). Effects of the riser exit geometries on the hydrodynamics and solids back-mixing in CFB risers: 3D simulation using CPFD approach. Powder Technol., 284, 130–142. DOI: 10.1016/j. powtec.2015.06.049. Search in Google Scholar

Wang, Q., Niemi, T., Peltola, J., Kallio, S., Yang, H., Lu, J. & Wei, L. (2015). Particle size distribution in CPFD modeling of gas–solid flows in a CFB riser. Particuology 21, 107–117. DOI: 10.1016/j.partic.2014.06.009. Search in Google Scholar

Benyahia, S., Syamlal, M. & O’Brien, T.J. (2005). Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe. Powder Technol., 156(2-3), 62–72. DOI: 10.1016/j.powtec.2005.04.002. Search in Google Scholar

Almuttahar, A. & Taghipour, F. (2008). Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technol., 185(1), 11–23. DOI: 10.1016/j.powtec.2007.09.010. Search in Google Scholar

Li, T., Dietiker, J.F. & Shadle, L. (2014). Comparison of full-loop and riser-only simulations for a pilot-scale circulating fluidized bed riser. Chem. Engin. Sci., 120, 10–21. DOI: 10.1016/j.ces.2014.08.041. Search in Google Scholar

Harris, S.E. & Crighton, D.G. (1994). Solitons, solitary waves, and voidage disturbances in gas-fluidized beds J. Fluid Mech., 266, 243–276. Search in Google Scholar

Shi, X., Sun, R., Lan, X., Liu, F., Zhang, Y. & Gao, J. (2015). CPFD simulation of solids residence time and back-mixing in CFB risers. Powder Technol., 271, 16–25. DOI: 10.1016/j.powtec.2014.11.011. Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering