Accès libre

Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis

À propos de cet article

Citez

Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R. & Michel, B. (2007). State of The Art of High Heat Flux Cooling Technologies. Heat Transf. Eng. 28(4), 258–281. DOI:10.1080/01457630601117799. Search in Google Scholar

Arzutug, M.E. & Basci, A.A. (2021). A New Heat Sink Design for Cooling Microprocessors and Investigation of Cooling Performance, Proceedings, Int. Symposium on Applied Science and Enginnering (Proceedings of ISASE 2021), 7–9 April, 2021 (pp. 120-123) Erzurum, Türkiye. Search in Google Scholar

Al-Tae’y, K.A., Ali, E.H. & Jebur, M.N. (2017). Experimental Investigation of Water Cooled Minichannel Heat Sink for Computer Processing Unit Cooling, Int. J. Eng. Res. Appl. 7-8(1), 38–39. DOI: 10.9790/9622-0708013849. Search in Google Scholar

Pal, A., Joshi, Y., Beitelmal, M.H., Patel, C.D. & Wenger, T. (2002). Design and Performance Evaluation of a Compact Thermosyphon, IEEE Transactions on Components and Packaking Technologies. 25(4), 601–607. DOI:10.1109/TCAPT.2002.807997. Search in Google Scholar

Badruddin, I.A., Al-Rashed, A.A., Salman, A.N.J., Khaleed, H.M.T., Ahmed, N.A., Kamangar, S., Yunus Khan, T.M. (2014). Investigation of Discrete Heating At Upper Section of A Porous Annulus. Aust. J. Basic Appl. Sci. 8(24), 283–289. Search in Google Scholar

Yuki,K. & Suzuki, K. (2011). Applicability of Minichannel Cooling Fins to The Next Generation Power Devices as a Single-Phase-Flow Heat Transfer Device. Trans. Japan Inst. Elect. Power Packaking, 4(1), 52–60. DOI: 10.5104/jiepeng.4.52. Search in Google Scholar

Dixt, T. & Ghosh, I. (2015). Review of Micro and Mini-Channel Heat Sinks and Heat Exchangers for Single Phase Fluids. Renew. Sust. Energy Rev. 41, 1298–1311. DOI: 10.1016/j. rser.2014.09.024. Search in Google Scholar

Lee, H. (2010). Thermal Design: Heat sinks, thermoelectrics, heat pipes, compact heat exchangers and solar cells (2nd ed.). John Wiley & Sons Inc. Search in Google Scholar

Kraus, A.D. & Bar-Cohen, A. (1995). Design and analysis of heat sinks. John Wiley & Sons Inc. Search in Google Scholar

Carr, J.D. An Examination of CPU Cooling Technologies. Retrieved December 23, 2022, from dsiventures.com/up-contect/uploads/2019/04/CPU-cooling-Technologies.pdf. Search in Google Scholar

Gayatri, M. and Sreeramulu, D. (2015). Performance of Water and Diluted Ethylene Glycol as Coolants for Electronic Cooling. Int. J. Eng. Res. Appl. 5, 135–140. Search in Google Scholar

Nikhil, S.S. & Kriplani, V.M. (2013). Review of Heat Transfer Enhancement Techniques in Swirl Flow Using Active and Passive Methods. Int. J. Eng. Res. Tech. 6(1), 86–94. Search in Google Scholar

Arzutug, M.E. & Yapıcı, S. (2009). Electrochemical Mass Transfer in Impinging Swirl Jets. Ind. Eng. Chem. Res. 48, 1593–1602. DOI: 10.1021/ie0715097. Search in Google Scholar

Siddique, H., Hoque, Md. S.B. & Ali, M. (2016), Effect of Swirl Flow On Heat Transfer Characteristics In A Circular Pipe. July, 2016 (pp. 1-7). International Conference on Mechanical Engineering: Proceedings of the 11th International Conference on Mechanical Engineering (ICME 2015), Dhaka, Bangladesh. Search in Google Scholar

Biruk, V.V. (1993). Vortex Effect of Energetic Gas Separation in Aviation Technics and Technologies, Izv. Vuzov. Aviac. Tekhn. 1(2), 20–23. Search in Google Scholar

Khatalov, A.A. (1989). Theory and experience of swirl flow. Naukova Dumka Press. Search in Google Scholar

Kakac, S. & Paramuanjaroenkij, A. (2009). Review of Convective Heat Transfer Enhancement with Fluids. Int. J. Heat and Mass Transf. 52, 3187–3196. DOI: 10.1016/j.ijheatmasstransfer.2009.02.006. Search in Google Scholar

Sara, O.N., İçer, F., Yapici, S. & Sahin, B. (2011). Effect of Suspended CuO Nanoparticles on Mass Transfer to a Rotating Disc Electrode. Exp. Therm. Fluid Sci. 35, 558–564. DOI: 10.1016/j.expthermflusci.2010.12.011. Search in Google Scholar

Patuleanu, L., Manolache-rusu, I.C., Andronic, F. & Radion, I. (2014). Heat Transfer Through Mini and Micro Circular Channels of CPU’s Cooling Systems. J. Eng. Stud. Res. 20(1), 76–81. DOI: 10.1117/12.823670. Search in Google Scholar

Al Shdaifat, M.Y., Zulküfli, R., Sopian, K. & Salih, A.A. (2020). Thermal and Hydraulic Performance of CuO/Water Nanofluids: A Review, Micromachines. 11(416), 1–19. DOI:10.3390/mi11040416. Search in Google Scholar

Heris, S.Z., Etemad, S.G. & Esfahany, M.N. (2006). Experimental Investigation of Oxide Nanofluids Laminer Flow Convective Heat Transfer. Int. Commun. Heat Mass Transf. 33, 529–535. DOI: 10.1016/j.icheatmasstransfer.2006.01.005. Search in Google Scholar

Caprani, A., Fricquelmont-Laizas, M.M. & Peranneau, P. (1988). Mass Transfer in Laminer Flow at a Rotating Disc Electrode in Suspensions of Inert Particles. J. Electrochem. Soc. 135(3), 635–642. Search in Google Scholar

Masuda, H., Ebata, A., Teramae, K. & Hishinuma, N. (1993). Alterlation of Thermal Conductivity and Viscosity Liquid by Dispersing Ultra-fine Particles (Dispersion of g-Al2O3, SiO2 and TiO2 ultra- fine particles). Netsu Bussei. 7, 227–233. DOI: 10.2963/jjtp.7.227. Search in Google Scholar

Lee, S., Choi, S.U.S., Li, S. & Eastman, J.A. (1999). Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Trans. ASME, J. Heat Transfer. 121, 280–289. DOI: 10.1115/1.2825978. Search in Google Scholar

Wang, X., Xu, X. & Choi, S.U.S. (1999). Thermal Conductivity of Nanoparticle-Fluid Mixture. J. Thermophys. Heat Transfer. 13, 474–480. DOI: 10.2514/2.6486. Search in Google Scholar

Afshari, F. & Muratçobanoğu, B. (2023). Thermal analysis of Fe3O4/water nanofuid in spiral and serpentine mini channels by using experimental and theoretical models. Int. J. Environ. Sci. Technol. 20, 2037–2052. DOI: 10.1007/s13762-022-04119-6. Search in Google Scholar

Naranjani, B., Roohi, E. & Ebrahimi, A. (2021). Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofuid. J. Therm. Anal. Calorim. 146, 2549–2560. DOI: 10.1007/s10973-020-10225-9. Search in Google Scholar

Ebrahimi, A., Rikhtegar, F., Sabaghan, A. & Roohi, E. (2016). Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 101, 190–201. DOI: 10.1016/j.energy.2016.01.102. Search in Google Scholar

Souida, S., Sahel, D., Ameur, H. & Yousfi, A. (2022). Numerical Simulation of Heat Transfer Behaviors in Conical Pin Fins Heat Sinks. Acta Mechanica Slovaca. 26(3), 32–41. DOI: 10.21496/ams.2023.002. Search in Google Scholar

Bencherif, B., Sahel, D., Benzeguir, R. & Ameur, H. (2023). Performance Analysis of Central Processing Unit Heat Sinks Fitted with Perforated Techniques and Splitter Inserts. J. Heat Mass Transf. 145(1), 014501. DOI: 10.1115/1.4055815. Search in Google Scholar

Sahel, D., Bellahcene, L., Yousfi, A. & Subasi, A. (2021). Numerical investigation and optimization of a heat sink having hemispherical pin fins. Int. Comm. Heat Mass Transf. 122, 105133. DOI: 10.1016/j.icheatmasstransfer.2021.105133. Search in Google Scholar

Çengel, Y.A. (2006). Heat and Mass Transfer- A Practical Approach (3rd ed.). Mc Graw Hill. Search in Google Scholar

Ismail, M., Fartaj, A., Karimi, M. (2013). Numerical Investigation on Heat Transfer and Fluid Flow Behaviors of Viscous Fluids in a Minichannel Heat Exchanger, Numerical Heat Transfer, Part A. 64(1), 1–29. Search in Google Scholar

Marcelino, E., Riehl, R.R. & Silva, D. de O. (2016). A Review on Thermal Performance of CuO-Water Nanofluids Applied to Heat Pipes and Their Characteristics. In: Proc. of 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). Search in Google Scholar

Beck, M.P. (2008). Thermal conductivity of metal oxide nanofluids. PhD Thesis. Georgia Institute of Technology, Georgia. Search in Google Scholar

Engineering Toolbox: Ethylene Glycol Heat-Transfer Fluid Properties. Retrieved December 25, 2022 from https://www.engineeringtoolbox.com/ethylene-glycol-d_146.html Search in Google Scholar

Kulkarni, D.P., Namburi, P., Misra, D. & Das, D.K. (2007). Viscosity of Copper Oxide Nanoparticles Dispersed in Ethylene Gylcol and Water Mixture. Exp. Therm. Fluid Sci. 32(2), 397–402. DOI: 10.1016/j.expthermflusci.2007.05.001. Search in Google Scholar

Genceli, O. (2005). Measurement technnique (Dimension, Pressure, Flow and Temperature Measurements). Istanbul, Türkiye. Birsen Publisher. Search in Google Scholar

Kline, S.J. & McClintock, F.A. (1953). Describing Uncertainties in Single-Sample Experiments. Mechanical Engineers. 75, 3–8. Search in Google Scholar

Mikielewicz, D. & Wajs, J. (2017). Possibilities of Heat Transfer Augmentation in Heat Exchangers with Minichannels for Marine Applications. Pol. Marit. Res. 24, 133–140. DOI: 10.1515/pomr-2017-0031. Search in Google Scholar

Miry, S.Z., Rowshani, M., Hanafizadeh, P., Ashjaee, M. & Amini, F. (2016). Heat Transfer and Hydrodynamic Performance Analysis of a Miniature Tangential Heat Sink Using Al2O3-H2O and TiO2-H2O Nanofluids. Exp. Heat Transf., 29, 1–25. DOI: 10.1080/08916152.2015.1046016. Search in Google Scholar

Saadoon, Z.H., Ali F.H., Hamzah, H.K., Abed, A.M. & Hatami, M. (2022). Improving the Performance of Mini-Channel Heat Sink by Using Wavy Channel and Different Types of Nanofluids. Sci. Rep., 12, 9402. DOI: 10.1038/s41598-022-13519-0. Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering