Accès libre

Method of purification of post-production condensates from polyester polyol production

À propos de cet article

Citez

1. Desroches, M., Escouvois, M., Auvergne, R., Caillol, S. & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Pol. Rev., 52(1), 38–79. DOI: 10.1080/15583724.2011.640443.10.1080/15583724.2011.640443 Search in Google Scholar

2. Ionescu, M. (2007). Chemistry and technology of polyols for polyurethanes. (pp.13–40). Rapra Technology, Shrewsbury, UK. Search in Google Scholar

3. Kopnick, H., Schmidt, M., Brugging, W., Ruter, J. & Kaminsky, W. (2000). Polyesters, Ullmann’s Encyclop. Ind. Chem., 623–649. DOI: 10.1002/14356007.a21_227.pub2.10.1002/14356007.a21_227.pub2 Search in Google Scholar

4. Fakirov, S. (2017). Polycondensation, Fundamentals of Polymers Science for Engineers. 221–240. DOI: 10.1002/9783527802180.ch9.10.1002/9783527802180.ch9 Search in Google Scholar

5. Chen, L., Xi, Z., Qion, Z. & Zhao, L. (2013). New Reactor for Polyester Polyols Cotinuous Synthetic Proccess, Macromolecular Symposia 333(1). DOI: 10.1002/masy.201300051.10.1002/masy.201300051 Search in Google Scholar

6. Kadkin, O. & Osajda, K. (2003). Polyester Polyols: Synthesis and characterization of diethylene glycol terephthalate oligomers. J. Polymer Sci., 41(8), 1114–1123. DOI: 10.1002/pola.10655.10.1002/pola.10655 Search in Google Scholar

7. Roers, R., Nefzger, H., Bauer, E., Van den Braak, J., Schlossmacher, J. & Heinemann, T. (2009). European Patent No. 23252774. Search in Google Scholar

8. Nefzger, H., Bauer, E., Van den Braak, J. & Kasperek, S. (2010). European Patent No. 2440596B1. Search in Google Scholar

9. DiGuiseppi, W., Walecka-Hutchison, C. & Jim, H. (2016). 1,4-dioxane treatment technologies, Remediation J. 27(1), 71–92. DOI: 10.1002/rem.21498.10.1002/rem.21498 Search in Google Scholar

10. Fan, P., Zhang, L., Liu, Z, Zhang, W., Cui, Q. & Wang, H. (2020). Analysis of trace organics and its correlation with COD in condensate from natural gas to hydrogen production, Water Sci. Technol. 82(5), 843–850. DOI: 10.2166/wst.2020.378.10.2166/wst.2020.37833031064 Search in Google Scholar

11. Lu, T., Chen, Y., Liu, M. & Jiang, W. (2019). Efficient degradation of evaporite condensing liquid of shale gas waste-water using O3/UV process, Process Safety and Environmental Protection, 121, 175–183. DOI: 10.1016/j.psep.2018.10.011.10.1016/j.psep.2018.10.011 Search in Google Scholar

12. Toth, A.J., Haaz, E. & Nagy, T. (2018). COD reduction of process wastewater with vacuum evaporation, Waste Treatment and Recovery, 3, 1–7. DOI: 10.1515/wtr-2018-0001.10.1515/wtr-2018-0001 Search in Google Scholar

13. Gualito, J.J., Cerino, F. J., Cardenas, J.C. & Rocha, J. A. (1997). Design method for Distillation Columns Filled with Metallic, Ceramic, or Plastic Structured Packings, Ind. & Engin. Chem. Res., 36, 1747–1757, DOI: 10.1021/ie960625z.10.1021/ie960625z Search in Google Scholar

14. Moran, S. (2017). Process Plant Layout, Distillation Columns and Towers., 325–338, DOI: 10.1016/B978-0-12-803355-5.00022-6.10.1016/B978-0-12-803355-5.00022-6 Search in Google Scholar

15. Trieu, Minh, V. & Pumwa, J. (2012). Modelling and Control Simulation for a Condensate Distillation Column, Distillation – Advances from Modelling to Applications, 3–34, DOI: 10.5772/38651.10.5772/38651 Search in Google Scholar

16. Koczka, K. & Mizsey, P. (2010). New area for distillation: Wastewater treatment, Periodica Polytechnica: Chem. Engin., 54(1), 41–45, DOI: 10.3311/pp.ch.2010-1.06.10.3311/pp.ch.2010-1.06 Search in Google Scholar

17. Liang, S., Cao, Y., Liu, X., Li, X., Zhao, Y., Wang, Y. & Wang, Y. (2016). Inisght into pressure-swing distillation from azeotropic phenomenon to dynamic control, Chem. Engin. Res. Design, 117, 318–335. DOI: 10.1016/j.cherd.2016.10.040.10.1016/j.cherd.2016.10.040 Search in Google Scholar

18. Biniaz, P., Arrdekani, N.T., Makarem, M.A. & Rahimpour, M.R. (2019). Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). Chem. Engin., 3(8). DOI: 10.3390/chemengineering3010008.10.3390/chemengineering3010008 Search in Google Scholar

19. Cai, Q.Q., Lee, B.C.Y., Ong, S.L. & Hu, J.Y. (2021). Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment-Recent advances, challenges and perspective, Water Res., 190, 116692. DOI: 10.1016/j.watres.2020.116692.10.1016/j.watres.2020.11669233279748 Search in Google Scholar

20. Fenton, H. (1876). On a new reaction of tartaric acid, Chem. News J. Ind. Sci. 33, 190. On-line access to books.google. Search in Google Scholar

21. Rueda, Marquez, J.J, Levchuk, I. & Sillanpaa, M. (2018). Application of Catalytic Wet Peroxide Oxidation for Industrial and Urban Wastewater Treatment: A Review, 8(12), 673. DOI: 10.3390/catal8120673.10.3390/catal8120673 Search in Google Scholar

22. Patil, K.D. & Kulkarni, B.D. (2014). Review of recovery methods for acetic acid from industrial waste streams by reactive distillation. J. Water Poll. & Purific. Res., 1(2), 13–18. Search in Google Scholar

23. Kandanapitiya, K.K.C.W. & Gunasekera, M.Y. (2015). Modelling of reactive distillation for acetic acid esterification. J. Instit. Engin., 48(4), 17. DOI: 10.4038/engineer.v48i4.6877.10.4038/engineer.v48i4.6877 Search in Google Scholar

24. Safarzadeh-Amiri, A., Bolton, J.R. & Carter, S.R. (1997). Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water, Water Res., 31(4), 787–798. DOI: 10.1016/S0043-1354(96)00373-9.10.1016/S0043-1354(96)00373-9 Search in Google Scholar

25. Schaider, L.A., Rodgers, K.M. & Rudel, R.A., (2017). Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems, Environ. Sci. & Technol., 51(13), 7304–7317, from ACS Publications database: https://pubs.acs.org/. DOI: 10.1021/acs.est.6b04778.10.1021/acs.est.6b0477828617596 Search in Google Scholar

26. Global Infrastructure Hub (2020, November). Intelligent process optimisation for water treatment, from: https://www.gihub.org/infrastructure-technology-use-cases/case-studies/intelligent-process-optimisation-for-water-treatment/ Search in Google Scholar

27. Smith, Edgar, R. & Wojciechowski, M. (1937, April). Boiling point-composition diagram of the system dioxane-water. J. Res. the Nat. Bureau of Standards, 18, 461–465.10.6028/jres.018.023 Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering