Accès libre

Investigation of the co-processing technology of crude oil and coal and its deployment

À propos de cet article

Citez

1. Ye, M., Zhu, W.L. & Xu, S.L. (2019). Coordinated development of coal chemical and petrochemical lndustries in China. Bull. Chinese Acad. Sci. 34(4), 417–425. DOI: 10.16418/j. issn.1000-3045.2019.04.006. Search in Google Scholar

2. Bae, J.S., Hwang, I.S. & Kweon, Y.J. (2012). Economic evaluations of direct, indirect and hybrid coal liquefaction. Korean J. Chem. Eng. 29(7), 868–875. DOI: 10.1007/s11814-011-0266-3.10.1007/s11814-011-0266-3 Search in Google Scholar

3. Hu, F.T., Tan, B.F. & Wang, G.Y. (2019). Technical progress and industrialization status of coal to fuel oil in China. Clean Coal Technol. 25(1), 57–63. DOI: 10.13226/j.issn.1006-6772.18122501. Search in Google Scholar

4. Fwng, J., Li, J. & Li, W. (2013). Influences of chemical structure and physical properties of coal macerals on coal liquefaction by quantum chemistry calculation. Fuel. Process. Technol. 109, 19–26. DOI: 10.1016/j.fuproc.2012.09.033.10.1016/j.fuproc.2012.09.033 Search in Google Scholar

5. Fratczak, J., Herrador, J.M.H. & Lederer, J. (2018). Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel. 234, 364–370. DOI: 10.1016/j.fuel.2018.06.131.10.1016/j.fuel.2018.06.131 Search in Google Scholar

6. Huang, Q., Zhang, W. & Yang, C. (2015). Modeling transport phenomena and reactions in a pilot slurry airlift loop reactor for direct coal liquefaction. Chem. Eng. Sci. 135, 441–451. DOI: 10.1016/j.ces.2015.01.003.10.1016/j.ces.2015.01.003 Search in Google Scholar

7. Tong, R., Zhang, B. & Yang, X. (2021). A life cycle analysis comparing coal liquefaction techniques: A health-based assessment in China. Sustain. Energy. Techn. 44, 101000. DOI: 10.1016/j.seta.2021.101000.10.1016/j.seta.2021.101000 Search in Google Scholar

8. Wang, Z.C., Ge, Y. & Shui, H.F. (2015). Molecular structure and size of asphaltene and preasphaltene from direct coal liquefaction. Fuel. Process. Technol. 137, 305–311. DOI: 10.1016/j.fuproc.2015.03.015.10.1016/j.fuproc.2015.03.015 Search in Google Scholar

9. Hirano, K. (2000). Outline of NEDOL coal liquefaction process development (pilot plant program). Fuel. Process. Technol. 62(2–3), 109–118. DOI: 10.1016/S0378-3820(99)00121-6.10.1016/S0378-3820(99)00121-6 Search in Google Scholar

10. Liu, Z., Shi, S. & Li, Y. (2010). Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering. Chem. Eng. Sci. 65(1), 12–17. DOI: –10.1016/j.ces.2009.05.014.10.1016/j.ces.2009.05.014 Search in Google Scholar

11. Li, C., Meng, H. & Yang, T. (2018). Study on catalytic performance of oil-soluble iron-nickel bimetallic catalyst in coal/oil co-processing. Fuel. 219, 30–36. DOI: 10.1016/j. fuel.2018.01.068.10.1016/j.fuel.2018.01.068 Search in Google Scholar

12. Fan, Y.L., Chang, F.Y. & Jiang, Z.S. (2021). Reaction process and hydrogen transfer mechanism in coal-oil coprocessing. Acta Petrolei Sinica (Petroleum Processing Section). 37(04), 807–814. DOI: 10.3969/j.issn.1001-8719.2021.04.009. Search in Google Scholar

13. Sun, Y.D., Wei, C. & Han, Z.X. (2022). Mechanism of coal oil co-refining under mild condition in hydrogen. J. China Univ. Petrol. (Edition of Natural Science). 46(3), 174–179. DOI: 10.3969/j.issn.1673-5005.2022.03.020. Search in Google Scholar

14. Huang, C.F., Li, D.P. & Yang, T. (2016). Status and research trends of co-processing of coal and oil. Modern Chem. Ind. 36(8), 8–13. DOI: 10.16606/j.cnki.issn0253-4320.2016.08.003. Search in Google Scholar

15. Li, C., Qin, Y. & Yang, T.F. (2017). Analysis of solid residues from the co-processing of different rank coals and oils. J. Fuel Chem. Technol., 45(4), 436–441. DOI: https://kns.cnki.net/kcms/detail/14.1140.TQ.20170411.1015.014.html. Search in Google Scholar

16. Yan, B. (2017). Study on the rheology of coal–oil slurries during heating at high pressure. Int. J. Coal Sci. Techn. 4(3), 274–280. DOI: 10.1007/s40789-017-0170-5.10.1007/s40789-017-0170-5 Search in Google Scholar

17. Wang, G.Y., Wang, X.Q. & Zhao, Y. (2022). Study on preparation and hydrogenation performance of organo molybdenum catalyst for coal-oil co-processing. Coal Conversion, 45(4), 55–63. DOI: 10.19726/j.cnki.ebcc.202204007.10.21203/rs.3.rs-1216417/v1 Search in Google Scholar

18. Wu, X.Z., Shu, G.P. & Li, K.J. (2015). Direct coal liquefaction process and engineering. Beijing, China: Science Press. Search in Google Scholar

19. Shi, S.D. (2012). Engineering fundamentals of coal hydrogenation and liquefaction. Beijing, China: Chemical Industry Press. Search in Google Scholar

20. Xie, K.C. (2002). Structure and reactivity of coal. Beijing, China: Science Press. Search in Google Scholar

21. Zhang, X.L. & Zhang, J. (2012). Coal chemistry. Beijing, China: China Coal Industry Publishing House. Search in Google Scholar

22. Barraza, J., Coley-Silva, E. & Pineres, J. (2016). Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction. Fuel. 172, 153–159. DOI: 10.1016/j.fuel.2015.12.072.10.1016/j.fuel.2015.12.072 Search in Google Scholar

23. Wu, C.L. (2010). Direct coal liquefaction. Beijing, China: Chemical Industry Press.10.1016/S1351-4180(10)70194-X Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering