Accès libre

Simultaneous photooxidation and photoreduction of phenol and Cr(VI) ions using titania modified with nanosilica

À propos de cet article

Citez

1. Al-Hajji, LA., Ismail, AA., Bumajdad, A., Alsaidi, M., Ahmed, SA., Al-Hazza, A. & Ahmed, N. (2021). Photodegradation of powerful five estrogens collected from waste water treatment plant over visible-light-driven Au/TiO2 photocatalyst. Environ. Technol. Innov. 24, 101958. DOI: 10.1016/j.eti.2021.101958.10.1016/j.eti.2021.101958 Search in Google Scholar

2. Jihyun, R. & Eunsung, K. (2016). Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar- supported TiO2 photocatalyst. J. Environ. Manage. 180, 94–101. DOI: 10.1016/j.jenvman.2016.05.016.10.1016/j.jenvman.2016.05.01627213862 Search in Google Scholar

3. Rejek, M. & Grzechulska-Damszel, J. (2018). Degradation of sertraline in water by suspended and supported TiO2. Pol. J. Chem. Technol. 20(2), 107–112. DOI: 10.2478/pjct-2018-0030.10.2478/pjct-2018-0030 Search in Google Scholar

4. Rejek, M., Grzechulska-Damszel, J. & Schmidt, B. (2021). Synthesis, Characterization, and Evaluation of Degussa P25/Chitosan Composites for the Photocatalytic Removal of Sertraline and Acid Red 18 from Water. J. Polym. Environ. 29, 3660–3667. DOI: 10.1007/s10924-021-02138-x.10.1007/s10924-021-02138-x Search in Google Scholar

5. Ochiai, T. & Fujishima, A. (2012). Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification. J. Photochem. Photobiol. C. 13, 247–262. DOI: 10.1016/j.jphotochemrev.2012.07.001.10.1016/j.jphotochemrev.2012.07.001 Search in Google Scholar

6. Nilchi, A., Janitabar-Darzi, S. Mahjoub, A.R. & Rasouli--Garmarodi, S. (2010). New TiO2/SiO2 nanocomposites – Phase transformations and photocatalytic studies. Colloids Surf. A. 361, 25–30. DOI: 10.1016/j.colsurfa.2010.03.006.10.1016/j.colsurfa.2010.03.006 Search in Google Scholar

7. Czech, B. & Tyszczuk-Rotko, K. (2018). Visible-light-driven photocatalytic removal of acetaminophen from water using a novel MWCNT-TiO2-SiO2 photocatalysts. Sep. Purif. Technol. 206(29), 343–355. DOI: 10.1016/j.seppur.2018.06.025.10.1016/j.seppur.2018.06.025 Search in Google Scholar

8. Dahl, M., Liu, Y. & Yin, Y. (2014). Composite titanium dioxide nanomaterials. Chem. Rev. 114, 853–9889. DOI: 10.1021/cr400634p.10.1021/cr400634p25011918 Search in Google Scholar

9. Shchelokova, E.A., Tyukavkina, V.V., Tsyryatyeva, A.V. & Kasikov, A.G. ( 2021). Synthesis and characterization of SiO2-TiO2 nanoparticles and their effect on the strength of self-cleaning cement composites. Constr. Build. Mater. 283, 122769. DOI: 10.1016/j.conbuildmat.2021.122769.10.1016/j.conbuildmat.2021.122769 Search in Google Scholar

10. Stokova, V., Gubareva, E., Ogurtsova, Y., Fediuk, R., Zhao, P., Vatin, N. & Vasilev, Y. (2021). Obtaining and properties of photocatalytic composite material of the SiO2-TiO2 system based on various types of silica raw materials. Nanomaterials 11, 1–26. DOI: 10.3390/nano11040866.10.3390/nano11040866806572733805267 Search in Google Scholar

11. Pakdel, E., Daoud, W.A., Seyedin, S., Wang, J., Razal, J.M., Sun, L. & Wang, X. (2018). Tunable photocatalytic selectivity of TiO2/SiO2 nanocomposites: Effect of silica and isolation. Colloids Surf. A. 552, 130–141. DOI: 10.1016/j.colsurfa.2018.04.070.10.1016/j.colsurfa.2018.04.070 Search in Google Scholar

12. Udom, I., Myers, P.D., Ram, M.K., Hepp, A.F., Archibong, E., Stefanakos, E.K. & Goswami, D.Y. (2014). Optimization of photocatalytic degradation of phenol using simple photocatalytic reactor. Am. J. Analyt. Chem. 5, 743–750. DOI: 10.4236/ajac.2014.511083.10.4236/ajac.2014.511083 Search in Google Scholar

13. Trinh, D.T.T., Le, S.T.T., Channei, D., Khanitchaidecha, W. & Nakaruk, A. (2016). Investigation of intermediate compounds of phenol in photocatalysis process. Int. J. Chem. Eng. Appl. 7(4), 273–276. DOI: 10.18178/ijcea.2016.7.4.588.10.18178/ijcea.2016.7.4.588 Search in Google Scholar

14. Rashmi, A., Brundabana, N. & Kulamani, P. (2018). Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470. DOI: 10.3762/bjnano.9.137.10.3762/bjnano.9.137600931029977679 Search in Google Scholar

15. Brasili, E., Bavasso, I., Petruccelli, V., Vilardi, G., Valletta, A., Bosco, C.D., Gentili, A., Pasqua, G. & Di Palma, L. (2020). Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci. Rep. 10, 1–11. DOI: 10.1038/s41598-020-58639-7.10.1038/s41598-020-58639-7700274432024866 Search in Google Scholar

16. Suma, N., Prakash, B.S.J. & Iyrngar, P. (2011). Oxidation of phenol, o-nitro phenol, o-chloro phenol and trichloroethylene present in water using surfactant immobilized manganate and impregnated metal cations. Silicon 3, 13–26. DOI: 10.1007/s12633-010-9063-6.10.1007/s12633-010-9063-6 Search in Google Scholar

17. Madhuranthakam, C.M.R., Thomas, A., Akhter, Z., Fernandes, A.Q. & Elkamel, A. (2021). Removal of chromium(VI) from contaminated water using untreated mooring leaves as biosorbent. Pollutants 1, 51–64. DOI: 10.3390/pollutants1010005.10.3390/pollutants1010005 Search in Google Scholar

18. Nasiri, E.F., Kebria, D.Y. & Qaderi, F. (2018). An experimental study on the simultaneous phenol and chromium removal from water using titanium dioxide photocatalyst. Civ. Eng. J. 4(3), 585–593. DOI: 10.28991/cej-0309117.10.28991/cej-0309117 Search in Google Scholar

19. WHO (1996). Guidelines for drinking-water quality. 2nd ed. Vol 2: Health criteria and other supporting information. Geneva: World Health Organization. Search in Google Scholar

20. WHO (1994). Phenol: health and safety guide. Search in Google Scholar

21. Lopes, P.R.M., Montagnolli, R.N., Bidoia, E.D. (2011). Analytical methods in photoelectrochemical treatment of phenol. J. Braz. Chem. Soc. 22(9), 1758–1764. DOI: 10.1590/S0103-50532011000900019.10.1590/S0103-50532011000900019 Search in Google Scholar

22. Santos, E.J., Sabatke, M., Herrmann, A.B., Sturgeon, R.E. (2021). Evaluation of sample preparation procedures for determination of Cr(VI) in Cr2O3 pigments by Vis spectrophotometry. Braz. Archi. Biol. Technol. 64, 1–12. DOI: 10.1590/1678-4324-75years-2021200455.10.1590/1678-4324-75years-2021200455 Search in Google Scholar

23. Borges, S.S., Korn, M. & Costa Lima, J.L.F. (2002). Chromium(III) determination with 1,5-diphenylcarbazide based on the oxidative effect of chlorine radicals generated from CCl4 sonolysis in aqueous solution. Anal. Sci. 18, 1361–1366. DOI: 10.2116/analsci.18.1361. DOI: 10.2116/analsci.18.1361.10.2116/analsci.18.136112502090 Search in Google Scholar

24. Kapridaki, C., Maravelaki, N-P. (2015). TiO2-SiO2-PDMS nanocomposites with self-cleaning properties for stone protection and consolidation. Geol. Soc. Spec. Publ. 416, 285–292. DOI: 10.1144/SP416.6.10.1144/SP416.6 Search in Google Scholar

25. Rowlette, P. & Wolden, C. (2009). Digital control of SiO2-TiO2 mixed-metal oxides by pulsed PECVD. ACS App. Mater. Interfaces, 1(11), 2586–91. DOI: 10.1021/am900506y.10.1021/am900506y20356131 Search in Google Scholar

26. Cani, D., van der Waal, J.C. & Pescarmona, P.P. (2021). Highly-accessible, doped TiO2 nanoparticles embedded at the surface of SiO2 as photocatalysts for the degradation of pollutants under visible and UV radiation. Appl. Catal. A., 621(5), 1–10. DOI: 10.1016/j.apcata.2021.118179.10.1016/j.apcata.2021.118179 Search in Google Scholar

27. Praveen, P., Viruthagiri, G., Mugundan, S. & Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles – synthesized via sol-gel route. Spectrochim. Acta A. 117, 622–629. DOI: 10.1016/j.saa.2013.09.037.10.1016/j.saa.2013.09.03724113014 Search in Google Scholar

28. Chien-Lin, T., Yi-Kwan, C., Shuai-Han, W., Zih-Wei, P. & Jong-Liang, L. (2010). 2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry and its interaction with CO2. J. Phys. Chem. C. 114(27), 11835–43. DOI: 10.1021/jp9117166.10.1021/jp9117166 Search in Google Scholar

29. Wanghui, C., Chika, T., Razavi, K., Masayoshi, F., Takashi, S. (2016). SiO2/TiO2 double-shell hollow particles: fabrication and UV-VIS spectrum characterization. Adv. Powder Technol. 27(3), 812–818. DOI: 10.1016/j.apt.2015.10.016.10.1016/j.apt.2015.10.016 Search in Google Scholar

30. Bo, Z., Dong, R., Jin, C. & Chen, Z. (2017). Facile synthesis of SiO2@TiO2 crystallite photocatalysts with enhanced interaction level and high light absorption efficiency. Nanotechnol. Environ. Eng. 2(17), 1–11. DOI: 10.1007/s41204-017-0028-5.10.1007/s41204-017-0028-5 Search in Google Scholar

31. Chen, WH., Takai, C., Khosroshahi, HR., Fuji, M. & Shirai, T. (2016). SiO2/TiO2 double-shell hollow particles: fabrication and UV–Vis spectrum characterization. Adv. Powdered Technol. 27, 812–818. DOI: 10.1016/j.apt.2015.10.016.10.1016/j.apt.2015.10.016 Search in Google Scholar

32. Hendrix, Y., Lazaro, A., Yu, Q. & Brouwers, J. (2015). Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World J. Eng. 5, 161–177. DOI: 10.4236/wjnse.2015.54018.10.4236/wjnse.2015.54018 Search in Google Scholar

33. Llano, B., Hidalgo, M.C., Rios, L.A. & Navio, J.A. (2014). Effect of the type of acid used in the synthesis of titania–silica mixed oxides on their photocatalytic properties. Appl. Catal. B 150–151, 389–395. DOI: 10.1016/j.apcatb.2013.12.039.10.1016/j.apcatb.2013.12.039 Search in Google Scholar

34. Sirimahachai, U., Ndiege, N., Chandrasekharan, R., Wongnawa, S. & Shannon, M.A. (2010). Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2): synthesis and photocatalytic activities. J. Sol-Gel Sci. Technol. 56 (1), 53–60. DOI: 10.1007/s10971-010-2272-z.10.1007/s10971-010-2272-z Search in Google Scholar

35. Balachandran, K., Venckatesh, R., Sivaraj, R. & Rajiv, P. (2014). TiO2 nanoparticles versus TiO2/SiO2 nanocomposites: a comparative study of photo catalysis on acid red 88. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 468–474. DOI: 10.1016/j.saa.2014.02.127.10.1016/j.saa.2014.02.12724682063 Search in Google Scholar

36. Kibombo, H.S., Peng, R., Rasalingam, S. & Koodali, R.T. (2012). Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catal. Sci. Technol. 2, 1737–1766. DOI: 10.1039/C2CY20247F.10.1039/c2cy20247f Search in Google Scholar

37. Seriani, N., Pinilla, C., Cereda, S., De Vita, A. & Scan-dolo, S. (2012). Titania-silica interfaces, J. Phys. Chem. C 116, 11062–11067. DOI: 10.1021/jp301584h.10.1021/jp301584h Search in Google Scholar

38. Ren, J., Li, Z., Liu, S., Xing, Y. & Xie, K. (2008). Silica-titania mixed oxides: Si–O–Ti connectivity, coordination of titanium, and surface acidic properties. Catal. Lett. 124, 185–194. DOI: 10.1007/s10562-008-9500-y.10.1007/s10562-008-9500-y Search in Google Scholar

39. Gobara, H., El-Salamony, R., Mohamed, D., Mishrif, M., Moustafa, Y. & Gendy, T. (2014). Use of SiO2- TiO2 nanocomposite as photocatalyst for the removal of trichlorophenol: a kinetic study and numerical evaluation, Chem. Mater. Res. 6, 63–81. Search in Google Scholar

40. de Chiara, M.L.V., Pal S., Licciulli, A., Amodio, M.L. & Colelli, G. (2015). Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: effects on the ripening of mature green tomatoes. Biosyst. Eng. 132, 61–70. DOI: 10.1016/j.biosystemseng.2015.02.008.10.1016/j.biosystemseng.2015.02.008 Search in Google Scholar

41. Papadam, T., Xekoukoulotakis, N.P., Poulios, I. & Mantzavinos, D. (2007). Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J. Photochem. Photobiol. A 186, 308 – 315. DOI:10.1016/j.jphotochem.2006.08.023.10.1016/j.jphotochem.2006.08.023 Search in Google Scholar

42. Acharya, R., Naik, B. & Parida, K. (2018). Cr(VI) remediation from aqueous environment through modified- TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 9, 1448–1470. DOI: 10.3762/bjnano.9.137.10.3762/bjnano.9.137600931029977679 Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering