À propos de cet article

Citez

1. Zhu, Z., Zhang, Y., Shang, Y. & Wen, Y. (2019). Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. Food Bioprocess Technol. 12, 281–287. DOI: 10.1007/s11947-018-2207-1. Open DOISearch in Google Scholar

2. de Chiara, M.L.V., Pal, S., Licciulli, A., Amodio, M.L. & Colelli, G. (2015) Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes, Biosystems Engineering 132, 61–70. DOI: 10.1016/j.biosystemseng.2015.02.008. Open DOISearch in Google Scholar

3. Keller, N., Ducamp, M.-N., Robert, D. & Keller, V. (2013). Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chem. Rev. 113, 5029–5070. DOI: 10.1021/cr900398v.23590210 Open DOISearch in Google Scholar

4. Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z. & Kuroyanagi, M. (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage. Transactions of the ASAE 46(3), 725–730. DOI: 10.13031/2013.13574. Open DOISearch in Google Scholar

5. Rychtowski, P., Tryba, B., Skrzypska, A. & Felczak, P. et al. (2022) Role of the Hydroxyl Groups Coordinated to TiO2 Surface on the Photocatalytic Decomposition of Ethylene at Different Ambient Conditions. Catalysts 12, 386. DOI: 10.3390/catal12040386. Open DOISearch in Google Scholar

6. Maneerat, C., Hayata, Y. Gas-phase photocatalytic oxidation of ethylene with TiO2-coated packaging film for horticultural products. (2008). Transactions of the ASABE 51(1), 163–168. DOI: 10.3390/ma12060896.647153130889799 Open DOISearch in Google Scholar

7. Iwanaga, M., Akimoto, Y. & Shiraishi, F. (2019) Effect of humid air on photocatalytic decomposition of ethylene by TiO2 immobilized on different supports. Eco-Engineering 31(2), 37–44. DOI: 10.11450/seitaikogaku.31.37. Open DOISearch in Google Scholar

8. de Chiara, M.L.V., Amodio, M.L. Scura, F., Spremulli, L. & Colelli, G. (2014). Design and preliminary test of a fluidised bed photoreactor for ethylene oxidation on mesoporous mixed SiO2/TiO2 nanocomposites under UV-A illumination. J. Agric. Engin. XLV,435, 146–152. DOI: 10.4081/jae.2014.435. Open DOISearch in Google Scholar

9. Ji, B., G. Yan, W. Zhao, X. Zhao, J. Ni,, J. Duan, Z. Chen & Z. Yang. (2020). Titanium mesh-supported TiO2 nano-film for the photocatalytic degradation of ethylene under a UV-LED. Ceramics International 46, 20830–20837. DOI: 10.1016/j.ceramint.2020.05.113. Open DOISearch in Google Scholar

10. Hussain, M., Bensaid, S., Geobaldo, F., Saracco,, G. & Russo N. (2011). Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO2 Nanoparticles. Ind. Eng. Chem. Res. 50, 2536–2543. DOI:10.1021/ie1005756. Open DOISearch in Google Scholar

11. Park, D.-R., Zhang, J., Ikeue, K., Yamashita, H. & Anpo, M. (1999). Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O. J. Catal. 185, 114–119. DOI: 10.1006/jcat.1999.2472. Open DOISearch in Google Scholar

12. Hauchecorne, B., Tytgat, T., Verbruggen, S.W., Hauchecorne, D., et al. (2011). Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. Appl. Catal. B: Environ. 105(1–2), 111–116. DOI: 10.1016/j.apcatb.2011.03.041. Open DOISearch in Google Scholar

13. Rychtowski, P., Orlikowski, J., Żołnierkiewicz, G. & Tryba, B. (2022). Mechanism of hydroxyl radicals formation on the reduced rutile. Mater. Res. Bulletin 147, 111643. DOI: 10.1016/j.materresbull.2021.111643. Open DOISearch in Google Scholar

14. Broniarz-Press, L., Agacinski, P., Rozanski, J. (2007). Shear-thinning fluids flow in fixed and fluidised beds. Int. J. Multiph. Flow, 33, 675–689. DOI: 10.1016/j.ijmultiphaseflow.2006.12.004. Open DOISearch in Google Scholar

15. Kuo, H.P., Wu, C.T. & Hsu, R.C. (2011). Continuous toluene vapour photocatalytic deduction in a multi-stage fluidised bed. Powder Technol. 210, 225–229. DOI: 10.1016/j. powtec.2011.03.022. Open DOISearch in Google Scholar

16. Lim, T.H. & Kim, S.D. Photocatalytic degradation of trichloroethylene over TiO2/SiO2 in an annulus fluidized bed reactor. (2002). Korean J. Chem. Eng. 19, 1072–1077. DOI:10.1007/BF02707235. Open DOISearch in Google Scholar

17. Tryba, B., Rychtowski, P., Srenscek-Nazzal, J. & Przepiórski, J. (2020). The influence of TiO2 structure on the complete decomposition of acetaldehyde gas, Mater. Res. Bulletin 126, 110816. DOI: 10.1016/j.materresbull.2020.110816. Open DOISearch in Google Scholar

18. Wu, C.-Y., Tu, K.-J., Deng, J.-P., Lo, Y.-S. & Wu, C.-H. (2017). Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials, 10, 566. DOI: 10.3390/ma10050566.545904428772926 Open DOISearch in Google Scholar

19. Chen, W., Takai, C., Khosroshahi, H.R., Fuji, M. & Shirai, T. (2015). Surfactant-free fabrication of SiO2-coated negatively charged polymer beads and monodisperse hollow SiO2 particles, Colloids Surfaces A Physicochem. Eng. Asp. 481, 375–383. DOI:10.1016/j.colsurfa.2015.06.008. Open DOISearch in Google Scholar

20. Ciambelli, P., Sannino, D., Palma, V., Vaiano, V. & Mazzei, R. S. (2009). Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System. Internat. J. Photoenergy, 2009, Article ID 709365. DOI: 10.1155/2009/709365. Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering