À propos de cet article

Citez

1. Gai, G., Hadjadj, A., Kudriakov, S., Mimouni, S. & Tho-mine, O. (2021). Numerical study of spray-induced turbulence using industrial fire-mitigation nozzles. Energies 14(1135). DOI: 10.3390/en14041135. Open DOISearch in Google Scholar

2. Huang, D.M., Li, L.M., Zhang, H., Xu, C.M., Li, Y. & Yang, H. (2009). Recent progresses in research of fire protection on historic buildings. J. Appl. Fire Sci. 19(1), 63–81. DOI:10.2190/AF.19.1.D. Open DOISearch in Google Scholar

3. Outinen, J., Samec, J. & Sokol, Z. (2012). Research on fire protection methods and a case study “Futurum”. Proc. Eng. 40, 339–344. DOI: 10.1016/j.proeng.2012.07.105. Open DOISearch in Google Scholar

4. Zhang, D., Li, Z., Yi, W. & Wang, F. (2013). Test study of spray characteristics of spiral nozzle in the spray tower. Acta Energiae Solaris Sin. 34, 1969–1972. DOI: 10.1051/conf/202017001009. Open DOISearch in Google Scholar

5. Arvidson, M. (2014). Large-scale water spray and water mist fire suppression system tests for the protection of ro–ro cargo decks on ships. Fire Techn. 50, 589–610. DOI: 10.1007/s10694-012-0312-7. Open DOISearch in Google Scholar

6. Qina, J. & Chow, W.K. (2013). Experimental data on water mist suppression. Proc. Eng. 62, 868–877. DOI: 10.1016/j. proeng.2013.08.137. Open DOISearch in Google Scholar

7. Ha, G., Shin, W.G. & Lee, J. (2021). Numerical analysis to determine fire suppression time for multiple water mist nozzles in a large fire test compartment. Nucl. Eng. Technol. 53(4), 1157–1166. DOI: 10.1016/j.net.2020.09.028. Open DOISearch in Google Scholar

8. Ren, M.X., Guo, Q., Wang, D.M. & Zuo, B.S. (2014). The design and optimization of foam nozzle for dust control underground coal mine. J. China Coal Soc. 39(6), 1102–1106. DOI: 10.13225/j.cnki.jccs.2013.1340. Open DOISearch in Google Scholar

9. Fangwei, H., Deming, W., Jiaxing, J. & Xiaolong, Z. (2016). A new design of foam spray nozzle used for precise dust control in underground coal mines. Int. J. Min. Sci. Technol. 26(2), 241–246. DOI: 10.1016/j.ijmst.2015.12.009. Open DOISearch in Google Scholar

10. Gałaj, J., Drzymała, T. & Pełech, A. (2017a). Analysis of the sprinkling intensity of the selected water nozzle. BUSES: Technology, Operation, Transport System 12, 873–879. Search in Google Scholar

11. Gałaj, J., Drzymała, T. & Piątek, P. (2017b). Analysis of influence of tilt angle on the distribution of water droplets diameters in a spray generated by the Turbo Master 52 nozzle. Proc. Eng. 172, 300–309. DOI: 10.1016/j.proeng.2017.02.118. Open DOISearch in Google Scholar

12. Bielicki, P. (1996). Fundamentals of fire fighting tactics. The School of Aspirants of the State Fire Service in Krakow. Krakow, Poland. Search in Google Scholar

13. Sardqvist, S. (1996). An engineering approach to fire-fighting tactics. Unpublished doctoral dissertation, University of Lund, Lund, Sweden. Search in Google Scholar

14. Gil, D. (2013). Equipment and extinguishing agents. NCO School of the State Fire Service in Bydgoszcz, Bydgoszcz, Poland. Search in Google Scholar

15. Ma, J.Y. (2014). Analysis on the fire risk existing in the storage of textile materials and textile goods. Proc. Eng. 71, 271–275. DOI: 10.1016/j.proeng.2014.04.039. Open DOISearch in Google Scholar

16. Roguski, J., Zbrożek, P. & Czerwieńko, D. (2012). Selected aspects of the use of water mist extinguishing devices in buildings. Józefa Tuliszkowski’s Publishing House of the Scientific and Research Center for Fire Protection State Research Institute, Józefów, Poland. Search in Google Scholar

17. Derecki, T. (1999). Fire-fighting equipment for the delivery of water and fire-fighting foams. Main School of Fire Service, Warsaw, Poland. Search in Google Scholar

18. Gil, D. (2004). Fire-fighting equipment. NCO School of the State Fire Service in Bydgoszcz, Bydgoszcz, Poland. Search in Google Scholar

19. Supron 3, Retrieved May 10, 2021 from https://supron.pl/en/product/hydrant-nozzle-pwh-52-d13-150/. Search in Google Scholar

20. Hietaniemi, J., Cajot, L.G., Pierre, M., Fraser-Mitchell, J., Joyeux, D. & Papaioannou, K. (2005). Risk-based fire resistance requirements. Final report. Office for Official Publications of the European Communities. Luxembourg. Search in Google Scholar

21. European sprinkler organisation homepage, Retrieved December 10, 2020 from www.eurosprinkler.org. Search in Google Scholar

22. Supon Białystok, Retrieved November 12, 2020 from http://www.supon.bialystok.pl. Search in Google Scholar

23. Gałaj, J., Pawlak, A., Pawlak, E. & Zegar, W. (2016). Laboratory in Hydromechanics for SGSP Students with Examples. Main School of Fire Service, Warsaw, Poland. Search in Google Scholar

24. Brkić D. & Prak P. (2018). Unified friction formulation from laminar to fully rough turbulent flow. Appl. Sci. 8(11), 2036, 1–13. DOI:10.3390/app8112036. Open DOISearch in Google Scholar

25. Drzymała, T., Gałaj, J. & Wójcik, M. (2017). Analysis of the impact of the flow rate and settings of the nozzle Turbojet 52 on distribution of the sprinkling intensity in spray. Sci. Paper of Main School of Fire Service 61(1), 151–170. Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering