Accès libre

Synthesis and anticancer evaluation of some coumarin and azacoumarin derivatives

À propos de cet article

Citez

1. Feuer, G. (1974). The Metabolism and Biological Actions of Coumarins, in Progress in medicinal chemistry, Elsevier, 85–158. DOI: 10.1016/S0079-6468(08)70267-4.Open DOISearch in Google Scholar

2. Evans, W.C. (2009). Trease and evans’ pharmacognosy E-book, Elsevier Health Sciences.Search in Google Scholar

3. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. & Okuda, T. (1989). Phenolic Constituents of Licorice. II.: Structures of Licopyranocoumarin, Licoarylcoumarin and Glisoflavone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chem. Pharm. Bull. 37, 3005–3009. DOI: 10.1248/cpb.37.3005.Open DOISearch in Google Scholar

4. Rosselli, S., Maggio, A.M., Faraone, N., Spadaro, V., Morris-Natschke, S.L., Bastow, K.F., Lee K.-H. & Bruno, M. (2009). The cytotoxic properties of natural coumarins isolated from roots of Ferulago campestris (Apiaceae) and of synthetic ester derivatives of aegelinol. Natural product communications 4(12), 1701–1706. DOI: 10.1177/1934578X0900401219.Open DOISearch in Google Scholar

5. Teng, C.-M., Lin, C.-H., Ko, F.-N., Wu, T.-S. & Huang, T.-F. (1994). The relaxant action of osthole isolated from Angelica pubescens in guinea-pig trachea. Naunyn-Schmiedeberg’s Archives of Pharmacology 349, 202–208. DOI: 10.1007/BF00169838.Open DOISearch in Google Scholar

6. Whang, W.K., Park, H.S., Ham, I., Oh, M., Namkoong, H., Kim, H.K., Hwang, D.W., Hur, S.Y., Kim, T.E., Park, Y.G., Kim, J.-R. & Kim, J. W. (2005). Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress. Experim. Molec. Med. 37, 436–446. DOI: 10.1038/emm.2005.54.Open DOISearch in Google Scholar

7. Patil, A.D., Freyer, A.J., Eggleston, D.S., Haltiwanger, R.C., Bean, M.F., Taylor, P.B., Caranfa, M.J., Breen, A.L. & Bartus, H.R. (1993). The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 36, 4131–4138. DOI: 10.1021/jm00078a001.Open DOISearch in Google Scholar

8. Spino, C., Dodier, M. & Sotheeswaran, S. (1998). Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Letters 8, 3475–3478. DOI: 10.1016/S0960-894X(98)00628-3.Open DOISearch in Google Scholar

9. Poole, S.K. & Poole, C.F. (1994). Thin-layer chromatographic method for the determination of the principal polar aromatic flavour compounds of the cinnamons of commerce. Analyst 119, 113–120. DOI: 10.1039/AN9941900113Open DOISearch in Google Scholar

10. Crichton, E.G. & Waterman, P.G. Dihydromammea C/OB: A new coumarin from the seed of Mammea africana. (1978). Phytochemistry 17, 1783–1786. DOI: 10.1016/S0031-9422(00)88695-1Open DOISearch in Google Scholar

11. Shin, E., Choi, K.-M., Yoo, H.-S., Lee, C.-K., Hwang, B.Y. & Lee M.K. (2010). Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biologi. and Pharmac. Bulle. 33, 1610–614. DOI: 10.1248/bpb.33.161020823583Open DOISearch in Google Scholar

12. Baek, N.I., Ahn, E.M., Kim, H.Y. & Park, Y.D. (2000). Furanocoumarins from the root of Angelica dahurica. Arch. Pharmac. Res. 23, 467–470. DOI: 10.1007/BF0297657411059825Open DOISearch in Google Scholar

13. Piller, N.B. (1975). A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. British J. Experim. Patholog, 56, 554–560.Search in Google Scholar

14. Emami, S. & Dadashpour, S. (2015). Current developments of coumarin-based anti-cancer agents in medicinal chemistry, Eur. J. Med. Chem. 102, 611–30. DOI: 10.1016/j.ejmech.2015.08.03326318068Open DOISearch in Google Scholar

15. Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M. & Yoshizawa, Y. (2001). The antiproliferative effect of coumarins on several cancer cell lines. Anticancer Res., 21, 917–923.Search in Google Scholar

16. Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S.L. & Lee, K.-H. (2003). Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 23, 322–345. DOI: 10.1002/med.1003412647313Open DOISearch in Google Scholar

17. Al-Ghareeb, M.S., Heba, A.E. & Abd-Allah, R.M. (2018). In Vitro Antitumor Evaluation of Some New Tetra Substituted 1,2,4-Triazines, Latin Amer. J. Pharmacy, 37, 1035–1045. http/www.who.int/newa-room/fact-sheet/detailed/cancer (retrived on 30 Nov 2018 ).Search in Google Scholar

19. Dong, P., Rakesh, K.P., Manukumar, H.M., Mohammed, Y.H.E., Karthik, C.S., Sumathi, S., Mallu, P. & Qin, H.-L. (2019). Innovative nano-carriers in anticancer drug delivery-a comprehensive review. Bioorg. Chem., 85, 325–336. DOI: 10.1016/j.bioorg.2019.01.01930658232Open DOISearch in Google Scholar

20. Moku, B., Ravindar, L., Rakesh, K.P. & Qin H.-L. (2019). The significance of N-methylpicolinamides in the development of anticancer therapeutics: Synthesis and structure-activity relationship (SAR) studies. Bioorg. Chem. 86, 513–537. DOI: 10.1016/j.bioorg.2019.02.03030782571Open DOISearch in Google Scholar

21. Zhang, X., Rakesh, K.P., Shantharam, C.S., Manukumar, H.M., Asir,i A.M., Marwani, H.M. & Qin, H.-L. (2018). Podophyllotoxin derivatives as an excellent anticancer aspirant for future chemotherapy: A key current imminent needs. Bioorg. Med. Chem. 26, 340–355. DOI: 10.1016/j.bmc.2017.11.02629269253Open DOISearch in Google Scholar

22. Zha, G.-F., Qin, H.-L., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Abdelazeem, A.H. & Bukhari, S.N.A. (2017). Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Europ. J. Med. Chem. 135, 34–48. DOI: 10.1016/j.ejmech.2017.04.02528431353Open DOISearch in Google Scholar

23. Qin, H.-L., Leng, J., Zhang, C.-P., Jantan, I., Amjad, M.W., Sher, M., Naeem-ul-Hassan, M., Hussain, M.A. & Bukhari, S.N.A. (2016). Synthesis of α,β-Unsaturated Carbonyl-Based Compounds, Oxime and Oxime Ether Analogs as Potential Anticancer Agents for Overcoming Cancer Multidrug Resistance by Modulation of Efflux Pumps in Tumor Cells. J. Med. Chem.59, 3549–3561. DOI: 10.1021/acs.jmedchem.6b0027627010345Open DOISearch in Google Scholar

24. Qin, H.-L., Leng, J., Youssif, B.G.M., Amjad, M.W., Raja, M.A.G., Hussain, M.A., Hussain, Z., Kazmi, S.N. & Bukhari S.N.A. (2017). Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents. Chem. Biol. & Drug Design 90, 443–449. DOI: 10.1111/cbdd.1296428186369Open DOISearch in Google Scholar

25. Singh, J., Sharma, S., Saxena, A.K., Nepali, K. & Bedi P.M.S. (2013). Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med. Chem. Res. 22, 3160–3169. DOI: 10.1007/s00044-012-0312-7Open DOISearch in Google Scholar

26. Singh, H., Singh, J.V., Gupta, M.K., Saxena, A.K., Sharma, S., Nepali, K. & Bedi, P.M.S. (2017). Triazole tethered isatin-coumarin based molecular hybrids as novel antitubulin agents: Design, synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Letters 27, 3974–3979. DOI: 10.1016/j.bmcl.2017.07.06928797799Open DOISearch in Google Scholar

27. Kamath, P.R., Sunil, D., Joseph, M.M., Abdul, Salam, A.A. & T.T. S. (2017). Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem. 136, 442–451. DOI: 10.1016/j.ejmech.2017.05.03228525842Open DOISearch in Google Scholar

28. Elshemy, H.A.H. & Zaki, M.A. (2017). Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorg. & Med. Chem.25, 1066–1075. DOI: 10.1016/j.bmc.2016.12.01928038941Open DOISearch in Google Scholar

29. Rizzk, Y., El-Deen, I., Mohammed, F., Abdelhamid, M. & Khedr, A. (2019). In Vitro Antitumor Evaluation of Some Hybrid Molecules Containing Coumarin and Quinolinone Moieties. Anti-cancer Agents in Med. Chem., 19(16), 2010–2018. DOI: 10.2174/187152061966619093014385631566140Open DOISearch in Google Scholar

30. Song, X.F., Fan, J., Liu, L., Liu, X.F. & Gao, F. (2020). Coumarin derivatives with anticancer activities: An update. Arch. Pharm., 353, e2000025. DOI: 10.1002/ardp.20200002532383190Open DOISearch in Google Scholar

31. Akkol, E.K., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E. & Capasso, R. (2020). Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12, 1959. DOI: 10.3390/cancers12071959740904732707666Open DOISearch in Google Scholar

32. Al-Warhi, T., Sabt, A., Elkaeed, E.B. & Eldehna, W.M. (2020). Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem., 103, 104163. DOI: 10.1016/j.bioorg.2020.10416332890989Open DOISearch in Google Scholar

33. Goud, N.S., Kumar, P. & Bharath, R.W. (2020). Recent developments of target based coumarin derivatives as potential anticancer agents. Mini-Rev. Med. Chem., 20, 1754–1766. DOI: 10.2174/138955752066620051000071832386492Open DOISearch in Google Scholar

34. Endo, S., Oguri, H., Segawa, J., Kawai, M., Hu, D., Xia, S., Okada, T., Irie, K., Fujii, S. & Gouda, H. (2020). Development of novel AKR1C3 inhibitors as new potential treatment for castration-resistant prostate cancer. Med. Chem., 63, 10396–10411. DOI: 10.1021/acs.jmedchem.0c0093932847363Open DOISearch in Google Scholar

35. Wang, C., Xi, D., Wang, H., Niu, Y., Liang, L., Xu, F., Peng, Y. & Xu, P. (2020). Hybrids of MEK inhibitor and NO donor as multitarget antitumor drugs. Eur. J. Med. Chem., 196, 112271. DOI: 10.1016/j.ejmech.2020.11227132305784Open DOISearch in Google Scholar

36. Xu, J., Li, H., Wang, X., Huang, J., Li, S., Liu, C., Dong, R., Zhu, G., Duan, C. & Jiang, F. (2020). Discovery of coumarin derivatives as potent and selective cyclin-dependent kinase 9 (CDK9) inhibitors with high antitumour activity. Eur. J. Med. Chem., 200, 112424. DOI: 10.1016/j.ejmech.2020.11242432447197Open DOISearch in Google Scholar

37. Sumorek-Wiadro, J., Zajac, A., Langner, E., Skalicka-Woźniak, K., Maciejczyk, A., Rzeski, W. & Jakubowicz-Gil, J. (2020). Antiglioma potential of coumarins combined with Sorafenib. Molecules 25, 5192. DOI: 10.3390/molecules25215192766465633171577Open DOISearch in Google Scholar

38. Sumorek-Wiadro, J., Zajac, A., Badziul, D., Langner, E., Skalicka-Woźniak, K., Maciejczyk, A., Wertel, I., Rzeski, W. & Jakubowicz-Gil, J. (2020). Coumarins modulate the anti-glioma properties of temozolomide. Eur. J. Pharmacol., 881, 173207. DOI: 10.1016/j.ejphar.2020.17320732446712Open DOISearch in Google Scholar

39. El-Deen, I. & Ibrahim, H. (2004). Synthesis and electron impact of mass spectra of 3-substituted chromeno [3, 2-c] chromen-6, 7-diones. Chem. Papers-Slovak Academy of Sci. 58, 200–204.Search in Google Scholar

40. El-Deen, I., Elgareib, M.S., Mahdy, A.R. & Al-Saleem, M.S. (2018). NMR Spectra Investigation of Some New Prepared Tetrasubstituted Coumarin Derivatives. Mens Agitat, 13.Search in Google Scholar

41. Moustafa, A.M.Y. & Bakare, S.B. (2019). Synthesis of Some Hybrid 7-Hydroxy Quinolinone Derivatives As Anti Breast Cancer Drugs. Res. Chem. Intermed. 45, 3895–3912. DOI: 10.1007/s11164-019-03827-yOpen DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering