À propos de cet article

Citez

1. Ishak, K.M.K. & Verbeek, C.J. (2016). Mechanical properties of protein-based polymer blends. J. Eng. Sci. 12, 77–86.Search in Google Scholar

2. Suarez, H., Barlow, J.W. & Paul, D.R. (1984). Mechanical properties of ABS/polycarbonate blends. J. Appl. Polym. Sci. 29(11), 3253–3259. DOI: 10.1002/app.1984.070291104.10.1002/app.1984.070291104Search in Google Scholar

3. Khan, M.M.K., Liang, R.F., Gupta, R. & Agarwal, S. (2005). Rheological and mechanical properties of ABS/PC blends. Korea-Aust. Rheol. J. 17(1), 1–7.Search in Google Scholar

4. Apaydın-Varol, E., Polat, S. & Putun, A.E. (2014). Pyrolysis kinetics and thermal decomposition behavior of poly-carbonate – a TGA-FTIR study. Therm. Sci. 18(3), 833–842. DOI: 10.2298/TSCI1403833A.10.2298/TSCI1403833ASearch in Google Scholar

5. Chanda, M. & Roy, S.K. (2006). Plastics technology handbook (4th ed.). CRC Press Taylor and Francis Publishers.Search in Google Scholar

6. Khun, N.W. & Liu, E. (2013). Thermal, mechanical and tribological properties of polycarbonate/acrylonitrile-butadiene--styrene blends. J. Polym. Eng. 33(6), 535–543. DOI: 10.1515/polyeng-2013-0039.10.1515/polyeng-2013-0039Search in Google Scholar

7. Marinovic-Cincovic, M., Jankovic, B., Jovanovic, V., Samarzija-Jovanovic, S. & Markovic, G. (2013). The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile-butadiene and ethylene-propylene-diene rubbers. Composites Part B. 45(1), 321–332. DOI: 10.1016/j. compositesb.2012.08.006.Search in Google Scholar

8. Carrasco, F., Perez-Maqueda, L.A., Sanchez-Jimenez, P.E., Perejon, A., Santana, O.O. & Maspoch, M. Ll. (2013). Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid) driven by random scission. Polym. Test. 32(5), 937–945. DOI: 10.1016/j.polymer-testing.2013.04.013.Search in Google Scholar

9. Carrasco, F., Perez-Maqueda, L.A., Santana, O.O. & Maspoch, M. Ll. (2014). Enhanced general analytical equation for the kinetics of the thermal degradation of poly (lactic acid)/ montmorillonite nanocomposites driven by random scission. Polym. Degrad. Stab. 101, 52–59. DOI: 10.1016/j.polymdegrad-stab.2014.01.014.Search in Google Scholar

10. Cuadri, A.A. & Martin-Alfonso, J.E. (2018). Thermal, thermo-oxidative and thermomechanical degradation of PLA: A comparative study based on rheological, chemical and thermal properties. Polym. Degrad. Stab. 150, 37–45. DOI: 10.1016/j. polymdegradstab.2018.02.011.Search in Google Scholar

11. Carrasco, F., Santana, O.O., Cailloux, J., Sanchez-Soto, M. & Maspoch, M. Ll. (2018). Poly (lactic acid) and acrylonitrile– butadiene–styrene blends: Influence of adding ABS–g–MAH compatibilizer on the kinetics of the thermal degradation. Polym. Test. 67, 468–476. DOI: 10.1016/j.polymertesting.2018.03.010.10.1016/j.polymertesting.2018.03.010Search in Google Scholar

12. Arora, S., Lala, S., Kumar, S., Kumara, M. & Kumar, M. (2011). Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Arch. Appl. Sci. Res. 3(3), 188–201.Search in Google Scholar

13. Slopiecka, K., Bartocci, P. & Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy. 97, 491–497. DOI: 10.1016/j.apenergy.2011.12.056.10.1016/j.apenergy.2011.12.056Search in Google Scholar

14. Feng, Y., Wang, B., Wang, F., Zhao, Y., Liu, C., Chen, J. & Shen, C. (2014). Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites. Polym. Degrad. Stab. 107, 129–138. DOI: 10.1016/j.polymdegradstab.2014.05.012.10.1016/j.polymdegradstab.2014.05.012Search in Google Scholar

15. Li, X.-G. & Huang, M.-R. (1999). Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry. Polym. Int. 48(5), 387–391. DOI: 10.1002/(SICI)1097--0126(199905)48:5<387::AID-PI150>3.0.CO;2-S.Search in Google Scholar

16. Moussout, H., Hammou, A., Mustapha, A. & Bourakhouadar, M. (2016). Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1–9. DOI: 10.1016/j.polymdegradstab.2016.05.016.10.1016/j.polymdegradstab.2016.05.016Search in Google Scholar

17. Gamiz-Gonzalez, M.A., Correia, D.M., Lanceros-Mendez, S., Sencadas, V., Ribelles, J.L. G. & Vidaurre, A. (2017). Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 167, 52–58. DOI: 10.1016/j.carbpol.2017.03.020.10.1016/j.carbpol.2017.03.02028433177Search in Google Scholar

18. Balart, R., Garcia-Sanoguera, D., Quiles-Carrillo, L., Montanes, N., & Torres-Giner, S. (2019). Kinetic analysis of the thermal degradation of recycled acrylonitrile-butadiene--styrene by non-isothermal thermogravimetry. Polymers, 11(2), 281. DOI. 10.3390/polym11020281.10.3390/polym11020281641905230960265Search in Google Scholar

19. Yang, S., Castilleja, J.R., Barrera, E.V. & Lozano, K. (2004). Thermal analysis of an acrylonitrile–butadiene–styrene/ SWNT composite. Polym. Degrad. Stab. 83(3), 383–388. DOI: 10.1016/j.polymdegradstab.2003.08.002.10.1016/j.polymdegradstab.2003.08.002Search in Google Scholar

20. Alwani, M.S., Abdul Khalil, H.P.S., Sulaiman, O., Nazrul Islam, M. & Dungani, R. (2013). An approach to using agricultural waste fibers in biocomposites application: thermogravimetric analysis and activation energy study. Bioresources. 9(1), 218–230. DOI: 10.15376/biores.9.1.218-230.10.15376/biores.9.1.218-230Search in Google Scholar

21. Ravari, F., Noori, M. & Ehsani, M. (2019). Thermal stability and degradation kinetic studies of PVA/RGO using the model-fitting and isoconversional (model-free) methods. Fibers Polym. 20, 472–480. DOI: 10.1007/s12221-019-8606-8.10.1007/s12221-019-8606-8Search in Google Scholar

22. Achilias, D.S., Panayotidou, E. & Zuburtikudis, I. (2011). Thermal degradation kinetics and isoconversional analysis of biodegradable poly (3-hydroxybutyrate)/ organomodified montmorillonite nanocomposites. Thermochim. Acta. 514(1), 58–66. DOI: 10.1016/j.tca.2010.12.003.10.1016/j.tca.2010.12.003Search in Google Scholar

23. Ceylan, S. & Topçu, Y. (2014). Pyrolysis kinetics of hazel-nut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188. DOI: 10.1016/j.biortech.2014.01.040.10.1016/j.biortech.2014.01.04024508656Search in Google Scholar

24. Moriana, R., Vilaplana, F., Karlsson, S. & Ribes, A. (2014). Correlation of chemical, structural and thermal properties of natural fibers for their sustainable exploitation. Carbohydr. Polym. 112, 422–431. DOI: 10.1016/j.carbpol.2014.06.009.10.1016/j.carbpol.2014.06.00925129763Search in Google Scholar

25. Alvarez, V., Rodriguez, E. & Vazquez, A. (2006). Thermal degradation and decomposition of jute/vinylester composites. J. Therm. Anal. Calorim. 85, 383–389. DOI: 10.1007/s10973-005-7102-0.10.1007/s10973-005-7102-0Search in Google Scholar

26. Kim, Y.S., Kim, Y.S. & Kim, S.H. (2010). Investigation of thermodynamic parameters in the thermal decomposition of plastic waste-waste lube oil compounds. Environ. Sci. Technol. 44, 5313–5317. DOI: 10.1021/es101163e.10.1021/es101163e20540533Search in Google Scholar

27. Xu, Y. & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour. Technol. 146, 485–493. DOI: 10.1016/j.biortech.2013.07.086.10.1016/j.biortech.2013.07.08623958681Search in Google Scholar

28. Quan, C., Ningbo, G. & Song, Q. (2016). Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J. Anal. Appl. Pyrolysis. 121, 84–92. DOI: 10.1016/j. jaap.2016.07.005.Search in Google Scholar

29. Othman, M.B.H., Akil, H.M., Rasib, S.Z.M., Khan, A. & Ahmad, Z. (2015). Thermal properties and kinetic investigation of chitosan-PMAA based dual-responsive hydrogels. Ind. Crops Prod. 66, 178–187. DOI: 10.1016/j.indcrop.2014.12.057.10.1016/j.indcrop.2014.12.057Search in Google Scholar

30. Polli, H., Pontes, L.A.M., Araujo, A.S., Barros, J.M.F. & Fernandes Jr., V.J. (2009). Degradation behavior and kinetic study of ABS polymer. J. Therm. Anal. Calorim. 95, 131–134. DOI: 10.1007/s10973-006-7781-1.10.1007/s10973-006-7781-1Search in Google Scholar

31. Maia, A.A.D. & de Morais, L.C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresour. Technol. 204, 157–163. DOI: 10.1016/j.biortech.2015.12.055.10.1016/j.biortech.2015.12.05526773950Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering