Accès libre

Study on particle movement characteristics in sandblast cylinder based on PIV technology

À propos de cet article

Citez

1. Juanjuan,S.U., Lihua,L.V. & Gaojin, L.I. et al. 2017. Research and Application of Continuous Sand-Feeding Sand Blaster[J]. Marine Technol. 65–67, 92.Search in Google Scholar

2. Yilong, H.E., LIU, Sshuling & HU, Jianxiu. 2019. Choose and Application of OCTG Internal Wall Blasting Machine[J]. Chem. Engin. & Equipment, 2(02), 167–169. DOI: 10.19566/j. cnki.cn35-1285/tq.2019.02.071.Search in Google Scholar

3. Ri Zhanga, Haixiao Liub & Sheng Donga. 2019. Approximate theoretical solution of the movement and erosion of solid particles in a 90° bend [J]. Wear. 430–431 (2019) 233–244. DOI: 10.1016/j.wear.2019.05.013.10.1016/j.wear.2019.05.013Search in Google Scholar

4. Thon, A., Püttmann, A. & Hartge, E.U. et al. 2011. Simulation of catalyst loss from an industrial fluidized bed reactor on the basis of labscale attrition tests[J]. Powder Technol. 214 (1), 21–30.. DOI: 10.1016/j.powtec.2011.07.01710.1016/j.powtec.2011.07.017Search in Google Scholar

5. Werther, J. & Xi, W. 1993. Jet attrition of catalyst particles in gas fluidized beds[J]. Powder Technol. 76 (1), 39–46. DOI: 10.1016/0032-5910(93)80039-D.10.1016/0032-5910(93)80039-DSearch in Google Scholar

6. Solnordal, C.B., Wong, C.Y. & Boulanger, J., 2015. An experimental and numerical analysis of erosion caused by sand pneumatically conveyed through a standard pipe elbow, Wear 336 43–57. DOI: 10.1016/j.wear.2015.04.017.10.1016/j.wear.2015.04.017Search in Google Scholar

7. Oka, Y.I., Okamura, K. & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: part 1: effects of impact parameters on a predictive equation, Wear 259, 95–101.10.1016/j.wear.2005.01.039Search in Google Scholar

8. Oka, Y. & Yoshida, T. (2005). Practical estimation of erosion damage caused by solid particle impact: part 2: mechanical properties of materials directly associated with erosion damage, Wear, 259, 102–109.10.1016/j.wear.2005.01.040Search in Google Scholar

9. Ballout, Y.,Mathis, J.A. & Talia, J.E. (1996). Solid particle erosion mechanism in glass[J]. Wear, 196(1). DOI: 10.1016/0043-1648(96)06922-0.10.1016/0043-1648(96)06922-0Search in Google Scholar

10. Simonini, A., Theunissen, R., Masullo, A. & Vetrano, M.R. (2019). PIV adaptive interrogation and sampling with image projection applied to water sloshing[J]. Experim. Thermal Fluid Sci. 102. DOI: 10.1016/j.ijheatfluidflow.2020.108561.10.1016/j.ijheatfluidflow.2020.108561Search in Google Scholar

11. Israel González-Neria, Alejandro Alonzo-Garcia, Sergio, A., Martínez-Delgadillo, Víctor X. Mendoza-Escamilla, Juan Antonio Yáñez-Varela, Patrick G. Verdin & Gabriela Rivadeneyra-Romero. (2019). PIV and dynamic LES of the turbulent stream and mixing induced by a V-grooved blade axial agitator[J]. Chem. Engin. J. 374. DOI: 10.1016/j.cej.2019.06.033.10.1016/j.cej.2019.06.033Search in Google Scholar

12. Sunghyuk Im, Hyoung Tae Kim, Bo Wook Rhee & Hyung Jin Sung. (2016). PIV measurements of the flow patterns in a CANDU-6 model[J]. Annals of Nuclear Energy, 98. DOI: 10.1016/j.anucene.2016.07.012.10.1016/j.anucene.2016.07.012Search in Google Scholar

13. Nguyen Lu Phuong & Kazuhide Ito. (2015). Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD[J]. Buil. Environ., 94. DOI: 10.1016/j.buildenv.2015.10.002.10.1016/j.buildenv.2015.10.002Search in Google Scholar

14. Jacobi, G., Thill, C.H., van’t Veer, R. & Huijsmans, R.H.M. (2019). Analysis of the influence of an interceptor on the transom flow of a fast ship by pressure reconstruction from stereoscopic scanning PIV[J]. Ocean Engin. 181. DOI: 10.1016/j.oceaneng.2019.02.062.10.1016/j.oceaneng.2019.02.062Search in Google Scholar

15. Sijie Fu, Pascal Henry Biwole & Christian Mathis. (2016). Numerical and experimental comparison of 3D Particle Tracking Velocimetry (PTV) and Particle Image Velocimetry (PIV) accuracy for indoor airflow study[J]. Buil. Environ., 100. DOI: 10.1016/j.buildenv.2016.02.002.10.1016/j.buildenv.2016.02.002Search in Google Scholar

16. Sijie Fu, Pascal Henry Biwole & Christian Mathis. (2015). Particle Tracking Velocimetry for indoor airflow field: A review[J]. Buil. Environ., 87. DOI: 10.1016/j.buildenv.2015.01.014.10.1016/j.buildenv.2015.01.014Search in Google Scholar

17. Feng Wu, Zeyu Yu, Lingyi Shang, Xiaoxun Ma & Wenjing Zhou. (2019). Experimental investigation on hydrodynamic behavior in a spouted bed with longitudinal vortex generators[J]. Adv. Powder Technol. 30(10). DOI: 10.1016/j.apt.2019.06.033.10.1016/j.apt.2019.06.033Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering