Accès libre

Effects of coupling agent on antioxidant properties and structure of PP/cotton stalk lignin composites

À propos de cet article

Citez

1. Zeng, H. & Li, C.J. (2019). Conversion of Lignin into High Value Chemical Products. DOI: 10.1007/978-1-4939-9060-3_1010.10.1007/978-1-4939-9060-3_1010Search in Google Scholar

2. Thuraisingam, J., Mishra, P., Gupta, A., Soubam, T. & Piah, B.M. (2019). Novel natural rubber latex/lignin-based bio-adhesive: synthesis and its application on medium density fiber-board. Iranian Polymer J. DOI: 10.1007/s13726-019-00696-5.10.1007/s13726-019-00696-5Search in Google Scholar

3. Pérez, I., Pasandín, A.R., Pais, J.C. & Pereira, P.A.A. (2019). Feasibility of using a lignin-containing waste in asphalt binders. Waste and Biomass Valorization. DOI: 10.1007/s12649-019-00590-4.10.1007/s12649-019-00590-4Search in Google Scholar

4. Cho, M., Ko, F.K. & Renneckar, S. (2019). Impact of thermal oxidative stabilization on the performance of lignin-based carbon nanofiber mats. ACS Omega, 4(3), 5345–5355. DOI: 10.1021/acsomega.9b00278.10.1021/acsomega.9b00278644321430949618Search in Google Scholar

5. Liqing, W. & Armando, M.D. (2016). A review on grafting of biofibers for biocomposites. Materials, 9(4), 303. DOI: 10.3390/ma9040303.10.3390/ma9040303550299628773429Search in Google Scholar

6. Pishnamazi, M., Casilagan, S., Clancy, C., Shirazian, S., Iqbal, J., Egan, D. & Collins, M.N. (2018). Microcrystalline Cellulose, Lactose and Lignin Blends: Process Mapping of Dry Granulation Via Roll Compaction, Powder Technol. DOI: 10.1016/j.powtec.2018.07.003.10.1016/j.powtec.2018.07.003Search in Google Scholar

7. Pishnamazi, M., Iqbal, J., Shirazian, S., Walker, G.M. & Collins, M.N. (2019). Effect of lignin on the release rate of acetylsalicylic acid tablets. Internat. J. Biolog. Macromol., 124, 354–359. DOI: 10.1016/j.ijbiomac.2018.11.136.10.1016/j.ijbiomac.2018.11.13630448498Search in Google Scholar

8. Pishnamazi, M., Ismail, H.Y., Shirazian, S., Iqbal, J. & Collins, M.N. (2019). Application of lignin in controlled release: development of predictive model based on artificial neural network for api release. Cellulose, 26(7). DOI: 10.1007/s10570-019-02522-w.10.1007/s10570-019-02522-wSearch in Google Scholar

9. Culebras, M., Geaney, H., Beaucamp, A., Upadhyaya, P., Dalton, E., Ryan, K.M. & Collins, M.N. (2019). Bio-derived Carbon Nanofibres from Lignin as High-Performance Li-Ion Anode Materials. Chem. Sus. Chem. 12(19), 4516–4521. DOI: 10.1002/cssc.201901562.10.1002/cssc.20190156231390144Search in Google Scholar

10. Guo, J., Yang, Z. & Gao. Ch. (2019). Effect of polypropylene fiber on properties of aeolian-sand mortar. IOP Conference Series Mater. Sci. Engin. 472(1), 012087. DOI: 10.1088/1757-899X/472/1/012087.10.1088/1757-899X/472/1/012087Search in Google Scholar

11. Mih, M., Mk, I. & Ahmed, F. (2018). Modification of cotton fiber with functionalized silane coupling agents vinyltriethoxysilane and aminopropyltriethoxysilane. J. Textile Sci. Engin. 08(03). DOI: 10.4172/2165-8064.1000361.10.4172/2165-8064.1000361Search in Google Scholar

12. Xiong, X., Yu, J., Xue, L., Zhang, C., Zha, Y. & Yi, G. (2017). Investigation of molecular structure and thermal properties of thermo-oxidative aged sbs in blends and their relations. Materials, 10(7), 768. DOI: 10.3390/ma10070768.10.3390/ma10070768555181128773124Search in Google Scholar

13. Bajwa, D.S., Bajwa, S.G. & Holt, G.A. (2015). Impact of biofibers and coupling agents on the weathering characteristics of composites. Polym. Degrad. Stab. 120, 212–219. DOI: 10.1016/j.polymdegradstab.2015.06.015.10.1016/j.polymdegradstab.2015.06.015Search in Google Scholar

14. Luis, Alberto, Mejía-Manzano, Bertha & A., et al. (2019). Improved extraction of the natural anticancerigen pristimerin from mortonia greggii root bark using green solvents and aqueous two-phase systems. Separ. Purificat. Technol. DOI: 10.1016/j.seppur.2018.08.056.10.1016/j.seppur.2018.08.056Search in Google Scholar

15. Chinese national standardization administration. (2000). GB/T3682 – 2000. China.Search in Google Scholar

16. Chinese national standardization administration. (2000). GB/T1040.3 – 2006. China.Search in Google Scholar

17. Chinese national standardization administration. (2000). GB/T1043 – 2008. China.Search in Google Scholar

18. Rojek, B. & Wesolowski., M. (2018). FTIR and TG analyses coupled with factor analysis in a compatibility study of acetazolamide with excipients. Spectrochimica acta. Part A, Molec. Biomol. Spectrosc. DOI: 10.1016/j.saa.2018.10.020.10.1016/j.saa.2018.10.02030340208Search in Google Scholar

19. Rachtanapun, P., Selke, S.E.M. & Matuana, L.M. (2004). Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends. J. Appl. Polymer Sci. 93(1), 364–371. DOI: 10.1002/app.20428.10.1002/app.20428Search in Google Scholar

20. Duan, L.M., Ma, J.Z., Lyu, B., Lu, J. & Wu, X.H. (2016). Preparation and properties of nano-zno/modified hydrogenated castor oil composites. J. Mater. Engin. DOI: 10.11868/j.issn.1001-4381.2016.02.010.Search in Google Scholar

21. Ding, L., Rui, J. & Li, J. (0). The effect of nanoparticles modification on pla/nano-zno composite. Appl. Mech. Mater. DOI: 10.4028/www.scientific.net/AMM.420.230.10.4028/www.scientific.net/AMM.420.230Search in Google Scholar

22. Chen, G., Yang, Y., Zhou, C., Zhou, Z. & Yan, D. (2019). Thermal-oxidative aging performance and life prediction of polyethylene pipe under cyclic and constant internal pressure. J. Appl. Pol. Sci. DOI: 10.1002/app.47766.10.1002/app.47766Search in Google Scholar

23. Caicedo, C., Edwin, A. & Murillo. (2019). Structural, thermal, rheological, morphological and mechanical properties of polypropylene functionalized in molten state with maleinized hyperbranched polyol polyester. Europ. Pol. J. DOI: 10.1016/j. eurpolymj.2019.06.005.10.1016/j.eurpolymj.2019.06.005Search in Google Scholar

24. Chen, X., Ma, Y., Cheng, Y., Zhang, A. & Liu, W. (2019). Enhanced mechanical and flame-resistant properties of polypropylene nanocomposites with reduced graphene oxide-functionalized ammonium polyphosphate and pentaerythritol. J. Appl. Pol. Sci. 136(41). DOI: 10.1002/app.48036.10.1002/app.48036Search in Google Scholar

25. Zhou, Y., Pengfei, J.I., Zhang, K., Meidong, L.I. & Guan, Q. (2018). Micro-properties of modified asphalt based on relative molecular mass and thermal properties. J. Building Mater. 21(1), 159–164. DOI: 10.3969/j.issn.1007-9629.2018.01.026.Search in Google Scholar

26. Yan, L.T. & Sheng, J. (2006). Analysis of phase morphology and dynamics of immiscible pp/pa1010 blends and its partial-miscible blends during melt mixing from sem patterns. Polymer, 47(8), 2894–2903. DOI: 10.1016/j.polymer.2006.02.048.10.1016/j.polymer.2006.02.048Search in Google Scholar

27. Zhang, H., Chen, Z., Xu, G. & Shi, C. (2018). Physical, rheological and chemical characterization of aging behaviors of thermochromic asphalt binder. Fuel, 211, 850–858. DOI: 10.1016/j.fuel.2017.09.111.10.1016/j.fuel.2017.09.111Search in Google Scholar

28. Welch, C.F., Rose, G.D., Malotky, D. & Eckersley, S.T. (2006). Rheology of high internal phase emulsions. Langmuir, 22(4), 1544–1550. DOI: 10.1021/la052207h.10.1021/la052207h16460072Search in Google Scholar

29. Wei, X., Collier, J.R. & Petrovan, S. (2007). Shear and elongational rheology of polyethylenes with different molecular characteristics. ii. elongational rheology. J. Appl. Polym. Sci. 104(2), 1184–1194. DOI: 10.1002/app.25757.10.1002/app.25757Search in Google Scholar

30. Dupin, J.C., Gonbeau, D., Vinatier, P. & Levasseur, A. (2000). Systematic xps studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys., 2. DOI: 10.1039/A908800H.10.1039/a908800hSearch in Google Scholar

31. Zhu, K., Jia, H., Zhao, S., Xia, T. & Zhu, L. (2019). Formation of environmentally persistent free radicals on microplastics under light irradiation. Environ. Sci. Technol. DOI: 10.1021/acs.est.9b01474.10.1021/acs.est.9b0147431246433Search in Google Scholar

32. Mirjalili, A., Zamanian, A. & Hadavi, M.M. (2019). TiO2 nanotubes-polydopamine-silver composites for long-term antibacterial properties: preparation and characterization. Biomed. Engin. Appl. Basis Commun. 31(03), 243–196. DOI: 10.4015/S1016237219500236.10.4015/S1016237219500236Search in Google Scholar

33. Valverde, J.M., Perejón, A., Medina-Carrasco, S. & Pérez Maqueda, L.A. (2015). Thermal decomposition of dolomite under co2: insights from TGA and in situ XRD analysis. Phys. Chem. Chem. Phys. 17, 30162–30176. DOI: 10.1039/c5cp05596b_.10.1039/C5CP05596BSearch in Google Scholar

34. Moore, Radhika, L., Mann, Jason & P., et al. (2018). In situ synchrotron XRD analysis of the kinetics of spodumene phase transitions. Phys. Chem. Chem. Phys.: PCCP. DOI: 10.1039/c7cp07754h.10.1039/C7CP07754H29367978Search in Google Scholar

35. Sergei, D., Aleksei, K., Mykhailo & Zhovner, et al. (2019). Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis. J. Biolog. Phys. DOI: 10.1007/s10867-018-9516-5.10.1007/s10867-018-9516-5640856330612228Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering