Accès libre

Synthesis of antibacterial polyurethane film and its properties

À propos de cet article

Citez

1. Engels, H., Pirkl, H., Albers, R., Albach, R.W., Krause, J., Hoffmann, A., Casselmann, H. & Dormish, J. (2013). Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 52, 9422-9441.10.1002/anie.20130276623893938Search in Google Scholar

2. Li, M., Chen, J., Shi, M.T., Zhang, H.L., Ma, P.X. & Guo, B.L. (2019). Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 375, UNSP 121999.10.1016/j.cej.2019.121999Search in Google Scholar

3. Wang, Y., Wang, M.N., Zhao, X.H., Gao, Y. & Liu, M.X. (2017). Determination of antioxidant content in hydroxyl-terminated ethylene oxide-tetrahydrofuran copolyether using ultraviolet spectrophotometry. Chem. Propell. Polym. Mater. 15, 92–94.Search in Google Scholar

4. Sun, M.F., Ren, X.E., Zhang, J.H., Zhang, X.M. & Wang, H.Y. (2019). Preparation and characterization of one-component polyurethane powder adhesives by the solution polymerization technology. J. Appl. Polym. Sci. 136, 47898.10.1002/app.47898Search in Google Scholar

5. Tsou, C., Lee, H., Hung, W., Wang, C., Shu, C., Suen, M. & De Guzman, M. (2016). Synthesis and properties of antibacterial polyurethane with novel bis(3-Pyridinemethanol) silver chain extender. Polymer. 85, 96–105.10.1016/j.polymer.2016.01.042Search in Google Scholar

6. Wekwejt, M., Michno, A., Truchan, K., Palubicka, A., Swieczko-Zurek, B., Osyczka, A. M. & Zielinski, A. (2019). Antibacterial activity and cytocompatibility of bone cement enriched with antibiotic, nanosilver, and nanocopper for bone regeneration. Nanomaterials 136, 47898.10.3390/nano9081114672292331382557Search in Google Scholar

7. Artifon, W., Pasini, S.M., Valerio, A., Gonzalez, S.Y. G., de Souza, S.M.D.G.U. & de Souza, A.A.U. (2019). Harsh environment resistant – antibacterial zinc oxide/Polyetherimide electrospun composite scaffolds. Mat. Sci. Eng. C-Mater. 103, 109859.10.1016/j.msec.2019.10985931349491Search in Google Scholar

8. Kim, J.H., Ma, J., Lee, S., Jo, S. & Kim, C.S. (2019). Effect of ultraviolet-ozone treatment on the properties and antibacterial activity of zinc oxide sol-gel film. Materials 12, 2422.10.3390/ma12152422669646731362464Search in Google Scholar

9. Hu, Z.H., Zhang, L., Zhong, L.L., Zhou, Y.Z., Xue, J.Q. & Li, Y. (2019). Preparation of an antibacterial chitosan-coated biochar-nanosilver composite for drinking water purification. Carbohyd. Polym. 219, 290–297.10.1016/j.carbpol.2019.05.01731151528Search in Google Scholar

10. Dil, N.N. & Sadeghi, (2019). M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. J. Hazard. Mater. 351, 38–53.10.1016/j.jhazmat.2018.02.017Search in Google Scholar

11. Jaffari, Z.H., Lam, S.M., Sin, J.C. & Zeng, H.H. (2019). Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mat. Sci. Semicon. Proc. 101, 103–115.10.1016/j.mssp.2019.05.036Search in Google Scholar

12. Yu, N.X., Cai, T.M., Sun, Y., Jiang, C.J., Xiong, H., Li, Y.B. & Peng, H.L. (2018). A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing. Int. J. Phar. 552, 277–287.10.1016/j.ijpharm.2018.10.00230291960Search in Google Scholar

13. Wang, Y., Li, P., Xiang, P., Lu, J., Yuan, J., & Shen, J. (2016). Electrospun polyurethane/keratin/agnp biocomposite mats for biocompatible and antibacterial wound dressings. J. Mater. Chem. B. 4, 635–648.10.1039/C5TB02358KSearch in Google Scholar

14. Jain, P. & Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63.10.1002/bit.2036815723325Search in Google Scholar

15. Lan, Y.H., Li, D.H., Zhai, J.X. & Yang, R.J. (2015). Molecular dynamics simulation on the binder of ethylene oxide-tetrahydrofuran copolyether cross-linked with N100. Ind. Eng. Chem. Res. 54, 3563–3569.10.1021/acs.iecr.5b00187Search in Google Scholar

16. Zhai, J.X., Qu, Z.Y., Zou, Y.C., Guo, X.Y. & Yang, R.J. (2015). Study on preparation and properties of polyether polytriazole elastomers. Chinese J. Polym. Sci. 33, 597–606.10.1007/s10118-015-1610-6Search in Google Scholar

17. Madhavan, K. & Reddy B.S.R. (2006). Synthesis and characterization of poly(dimethylsiloxane-urethane) elastomers: Effect of hard segments of polyurethane on morphological and mechanical properties. J. Polym. Sci. Pol. Chem. 44, 2980–2989.10.1002/pola.21401Search in Google Scholar

18. Stribeck, A., Eling, B., Poselt, E., Malfois, M. & Schander, E. (2019). Melting, solidification, and crystallization of a thermoplastic polyurethane as a function of hard segment content. Macromol. Chem. Phys. 220, 1900074.10.1002/macp.201900074Search in Google Scholar

19. Wang, F.F., Chen, S.L., Wu, Q., Zhang, R.C. & Sun, P.C. (2019). Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer 163, 154–161.10.1016/j.polymer.2018.12.062Search in Google Scholar

20. Fang, H.G., Wang, H.L., Sun, J., Wei, H.B. & Ding, Y.S. (2016). Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC. Adv. 6, 13589–13599.10.1039/C5RA26664ESearch in Google Scholar

21. Wu, G.M., Liu, G.F., Chen, J. & Kong, Z.W. (2017). Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofibrillated cellulose. Prog. Org. Coat. 106, 170–176 .10.1016/j.porgcoat.2016.10.031Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering