À propos de cet article

Citez

1. Zhang, S., Fan, J., Zhang, S., Wang, J., Wang, X., Du, J. & Peng, X. (2014). Lighting up fluoride ions in cellular mitochondria using a highly selective and sensitive fluorescent probe. Chem. Commun. 50, 14021–14024. DOI: 10.1039/c4cc05094k.10.1039/C4CC05094KSearch in Google Scholar

2. Li, Y., Duan, Y., Zheng, J., Li, J., Zhao, W., Yang, S. & Yang, R. (2013). SelF–assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colorimetric detection of fluoride ions. Anal. Chem. 85, 11456–11463. DOI: 10.1021/ac402592c.10.1021/ac402592c24164279Search in Google Scholar

3. Zeng, L., Yuan, Y., Jiang, C., Mu, J., Li, F., Wan, Y., Xu, H., Qu, J., Huang, P. & Lin, J. (2019). A near-infrared turn-on probe for in vivo chemoselective photoacoustic detection of fluoride ion. Dyes and Pigments 165, 408–414. DOI: 10.1016/j. dyepig.2019.02.049.Search in Google Scholar

4. Duke, R.M., Veale, E.B., Pfeffer, F.M., Kruger, P.E. & Gunnlaugsson, T. (2010). Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 39, 3936–3953. DOI: 10.1039/B910560N.10.1039/b910560n20818454Search in Google Scholar

5. Dichiarante,V., Milani, R. & Metrangolo, P. (2018). Natural surfactants towards a more sustainable fluorine chemistry, Green Chem. 20, 13–27. DOI: org/10.1039/C7GC03081A.Search in Google Scholar

6. Wang, C.Y., Yang, S., Yi, M., Liu, C.H., Wang, Y.J., Li, J.S., Li, Y.H. & Yang, R.H. (2014). Graphene oxide assisted fluorescent chemodosimeter for high-performance sensing and bioimaging of fluoride ions. ACS Appl. Mater. Interfaces 6, 9768–9775. DOI: 10.1021/am502142d.10.1021/am502142d24837223Search in Google Scholar

7. Zhou, Y., Zhang, J.F. & Yoon, J. (2014). Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chem. Rev. 114, 5511–5571. DOI: 10.1021/cr400352m.10.1021/cr400352m24661114Search in Google Scholar

8. Urano, Y. (2012). Novel live imaging techniques of cellular functions and in vivo tumors based on precise design of small molecule-based ‘Activatable’ fluorescence probes. Curr. Opin. Chem. Biol. 16, 602–608. DOI: 10.1016/j.cbpa.2012.10.02310.1016/j.cbpa.2012.10.02323149093Search in Google Scholar

9. Turan, I.S., Seven, O., Ayan, S. & Akkaya, E.U. (2017). Amplified chemiluminescence signal for sensing fluoride ions. ACS Omega 2, 3291–3295. DOI: 10.1021/acsomega.7b005 37.Search in Google Scholar

10. Shi, X.M., Fan, W.L., Fan, C.H., Lu, Z.L., Bo, Q.B., Wang, Z., Black, C.A., Wang, F.F. & Wang, Y.Q. (2017). A two-photon fluorescent probe for imaging aqueous fluoride ions in living cells and tissues. Dyes Pigm. 140, 109–115. DOI: 10.1016/j.dyepig.2017.01.038.10.1016/j.dyepig.2017.01.038Search in Google Scholar

11. Li, Y.H., Duan, Y., Zheng, J., Li, J.S., Zhao, W.J., Yang, S. & Yang, R.H. (2013). SelF–assembly of graphene oxide with a silyl-appended spiropyran dye for rapid and sensitive colori-metric detection of fluoride ions. Anal. Chem. 85, 11456–11463. DOI: 10.1021/ac402592c.10.1021/ac402592cSearch in Google Scholar

12. Ke, B.W., Chen, W.X., Ni, N.T., Cheng, Y.F., Dai, C.F., Dinh, H. & Wang, B.H. (2013). A fluorescent probe for rapid aqueous fluoride detection and cell imaging. Chem. Commun. 49, 2494–2496. DOI: 10.1039/C2CC37270C.10.1039/C2CC37270CSearch in Google Scholar

13. Gabrielli, L. & Mancin, F. (2016). Minimal selF–immolative probe for multimodal fluoride detection. J. Org. Chem. 81, 10715–10720. DOI: 10.1021/acs.joc.6b01787.10.1021/acs.joc.6b0178727709951Search in Google Scholar

14. Kang, Y.F., Qiao, H.X., Meng, L.Y., Xin, Z.H., Ge, L.P., Dai, M.Y., He, Z. & Zhang, C.H. (2017). Selective fluorescent detection of cysteine over homocysteine and glutathione by a simple and sensitive probe. Aust. J. Chem. 70, 952–956. DOI: 10.1071/CH17208.10.1071/CH17208Search in Google Scholar

15. Li, Z., Xu, Y.Q., Fu, J., Zhu, H.L. & Qian, Y. (2018). Monitoring of Au(III) species in plants using a selective fluorescent probe. Chem. Commun. 54, 888–891. DOI: 10.1039/C7CC08333E.10.1039/C7CC08333ESearch in Google Scholar

16. Zheng, X.J., Zhu, W.C., Liu, D., Ai, H., Huang, Y. & Lu, Z.Y. (2014). Highly selective colorimetric/fluorometric dual-channel fluoride ion probe, and its capability of differentiating cancer cells. ACS Appl. Mater. Interfaces 6, 7996–8000. DOI: 10.1021/am501546h.10.1021/am501546h24832790Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering