Accès libre

Immobilization of permeabilized cells of baker’s yeast for decomposition of H2O2 by catalase

À propos de cet article

Citez

1. Pscheidt, B. & Glieder, A. (2008). Yeast cell factories for fine chemical and API production. Microb. Cell Fact. 7(1), 25. DOI: 10.1186/1475-2859-7-25.10.1186/1475-2859-7-25Open DOISearch in Google Scholar

2. Pratap, U.R., Jawale, D.V., Londhe, B.S. & Mane, R.A. (2011). Baker’s yeast catalyzed synthesis of 1,4- benzothiazines, performed under ultrasonication. J. Mol. Catal. B- Enzym. 68(1), 94–97. DOI: 10.1016/j.molcatb.2010.09.018.10.1016/j.molcatb.2010.09.018Open DOISearch in Google Scholar

3. Hounga, J.Y. & Liau, J.S. (2006). Mathematical modeling of asymmetric reduction of ethyl 4-chloro acetoacetate by bakers’ yeast. Enzyme Microb. Tech. 38(7), 879–886. DOI: 10.1016/j.enzmictec.2005.02.028.10.1016/j.enzmictec.2005.02.028Open DOISearch in Google Scholar

4. Fow, K.L., Poon, L.C.H., Sim, S.T., Chuah, G.K. & Jaenicke, S. (2008). Enhanced asymmetric reduction of ethyl 3-oxobutyrate by baker’s yeast via substrate feeding and enzyme inhibition. Eng. Life Sci. 8(4), 372–380. DOI: 10.1002/elsc.200700052.10.1002/elsc.200700052Open DOISearch in Google Scholar

5. Yu, M.A., Hou, Y., Gong, G.H., Zhao, Q., Zhu, X.B., Jiang, L., Yang, X.L. & Liao, F. (2009). Effects of industrial storage on the bioreduction capa city of brewer’s yeast. J. Ind. Microbiol. Biot. 36(1), 157–162. DOI: 10.1007/s10295-008-0483-x.10.1007/s10295-008-0483-xOpen DOISearch in Google Scholar

6. FAO. (2018). World food and agriculture – statistical pocketbook 2018. Rome. 254 pp. Licence: CC BY-NC-SA 3.0 IGO.Search in Google Scholar

7. Miranda, R.C., Souza, C.S., Gomes, E.B., Lovaglio, R.B., Lopes, C.E. & Sousa, M.F. (2007). Biodegradation of diesel oil by yeasts isolated from the vicinity of Suape Port in the State of Pernambuco – Brazil. Braz. Arch. Biol. Technol. 50(1), 147–152. DOI: 10.1590/S1516-89132007000100018.10.1590/S1516-89132007000100018Open DOISearch in Google Scholar

8. Karimi, M., Hassanshahian, M., Karimi, M. & Hassanshahian, M. (2016). Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Za-rand, Kerman. Braz. J. Microbiol. 47(1), 18–24. DOI: 10.1016/j.bjm.2015.11.032.10.1016/j.bjm.2015.11.032Search in Google Scholar

9. Kaushal, J., Mehandia, S., Singh, G., Raina, A. & Arya, S.K. (2018). Catalase enzyme: application in bioremediation and food industry. Biocatal. Agric. Biotechnol. 16, 192–199. DOI: 10.1016/j.bcab.2018.07.035.10.1016/j.bcab.2018.07.035Open DOISearch in Google Scholar

10. Venkateshwaran, G., Somashekar, D., Prakash, M.H., Agrawal, R., Basappa, S.C. & Joseph R. (1999). Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 34(2), 187–191. DOI: 10.1016/S0032-9592(98)00087-9.10.1016/S0032-9592(98)00087-9Search in Google Scholar

11. Raducan, A., Cantemir, A.R., Puiu, M. & Oancea, D. (2012). Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioproc. Biosyst. Eng. 35(9), 1523–1530. DOI: 10.1007/s00449-012-0742-0.10.1007/s00449-012-0742-022565543Open DOISearch in Google Scholar

12. Presecki, A.V. & Vasić–Racki, D. (2005). Production of L–malic acid by permeabilized cells of commercial Saccharomyces sp. Strains. Biotechnol. Lett. 27(23–24), 1835–1839. DOI: 10.1007/s10529-005-3890-3.10.1007/s10529-005-3890-3Open DOISearch in Google Scholar

13. Yu, M.A., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X.B. & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biot. 34(2), 151–156. DOI: 10.1007/s10295-006-0179-z.10.1007/s10295-006-0179-zOpen DOISearch in Google Scholar

14. Panesar, P.S., Panesar, R., Singh, R.S. & Bera, M.B. (2007). Permeabilization of yeast yells with organic solvents for β–galactosidase activity. Res. J. Microbiol. 2(1), 34–41. DOI: 10.3923/jm.2007.34.41.10.3923/jm.2007.34.41Open DOISearch in Google Scholar

15. Abraham, J. & Bhat, S.G. (2009). Permeabilization of baker’s yeast with N–lauroyl sarcosine. J. Ind. Microbiol. Biotechnol. 35(8), 799–804. DOI: 10.1007/s10295-008-0350-9.10.1007/s10295-008-0350-9Open DOISearch in Google Scholar

16. Sekhar, S., Bhat, N. & Bhat, S.G. (1999). Preparation of detergent permeabilized Bakers’ yeast whole cell catalase. Proc. Biochem. 34(4), 349–354. DOI: 10.1016/S0032-9592(98)00105-8.10.1016/S0032-9592(98)00105-8Open DOISearch in Google Scholar

17. Trawczynska, I. & Wojcik, M. (2014). Application of Response Surface Methodology for optimization of permeabilization process of baker’s yeast, Pol. J. Chem. Technol. 16(2), 31–35. DOI: 10.2478/pjct-2014-0026.10.2478/pjct-2014-0026Open DOISearch in Google Scholar

18. Trawczynska, I. (2015). Research and modeling of the yeast cells permeabilization process using selected alcohols. Published doctoral dissertation. West Pomeranian University of Technology Szczecin.Search in Google Scholar

19. Beers, R.F. & Sizer, I.W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195(1), 133–140.10.1016/S0021-9258(19)50881-XSearch in Google Scholar

20. Chance, B. (1950). The reactions of catalase in the presence of the notatin system. Biochem. J. 46(4), 387–402.10.1042/bj0460387127544015420164Search in Google Scholar

21. Idris, A. & Suzana, W. (2006). Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41(4), 1117–1123. DOI: 10.1016/j.procbio.2005.12.002.10.1016/j.procbio.2005.12.002Open DOISearch in Google Scholar

22. Liouni, M., Drichoutis, P. & Nerantzis, E.T. (2007). Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cells. World J. Microb. Biot. 24(2), 281–288. DOI: 10.1007/s11274-007-9467-7.10.1007/s11274-007-9467-7Open DOISearch in Google Scholar

23. Gokgoz, M. & Yigitoglu, M. (2011). Immobilization of Saccharomyces Cerevisiae on to modified carboxymethylcellulose for production of ethanol. Bioproc. Biosyst. Eng. 34(7), 849–857. DOI: 10.1007/s00449-011-0535-x.10.1007/s00449-011-0535-xOpen DOISearch in Google Scholar

24. Suenaga, T., Aoyagi, R., Sakamoto, N., Riya, S., Ohashi H., Hosomi M., Tokuyama, H. & Terada, A. (2018). Immobilization of Azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: Biokinetic characterization and modelling. J. Biosci. Bioeng. 126(2), 213–219. DOI: 10.1016/j.jbiosc.2018.02.014.10.1016/j.jbiosc.2018.02.014Open DOISearch in Google Scholar

25. Lee, K.H., Choi, I.S., Kim, Y.G., Yang, D.J. & Bae, H.J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technol. 102(17), 8191–8198. DOI: 10.1016/j.biortech.2011.06.063.10.1016/j.biortech.2011.06.063Open DOISearch in Google Scholar

26. Suzuki, T., Yamaguchi, T. & Ishida, M. (1998). Immobilization of Prototheca zopfii in calcium alginate beads for the degradation of hydrocarbons. Process Biochem. 33(5), 541–546. DOI: 10.1016/S0032-9592(98)00022-3.10.1016/S0032-9592(98)00022-3Open DOISearch in Google Scholar

27. Taylor, A., Molzahn, P., Bushnell, T., Bushnell, T., Cheney, C., LaJeunesse, M., Azizian, M. & Semprini, L. (2018). Immobilization of Methylosinus trichosporium OB3b for methanol production. J. Ind. Microbiol. Biotechnol. 45(3), 201–211. DOI: 10.1007/s10295-018-2010-z.10.1007/s10295-018-2010-zOpen DOISearch in Google Scholar

28. Elibol, M. & Moreira A.R. (2003). Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinibacter turnirae. Process Biochem. 38(10), 1445–50. DOI: 10.1016/S0032-9592(03)00024-4.10.1016/S0032-9592(03)00024-4Search in Google Scholar

29. Carvalho, W., Silva, S.S., Converti, A., Vitolo, M., Felipe, M.G.A., Roberto, I.C., Silva, M.B. & Manchilha, I.M. (2002). Used of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate. Appl. Biochem. Biotech. 98(1–9), 489–496. DOI: 10.1385/ABAB:98-100:1-9:489.10.1385/ABAB:98-100:1-9:489Open DOISearch in Google Scholar

30. Duarte, J.C., Rodrigues, J.A., Moran, P.J., Valença, G.P. & Nunhez, J. R. (2013). Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 3, 31. DOI: 10.1186/2191-0855-3-31.10.1186/2191-0855-3-31Open DOISearch in Google Scholar

31. Kaushal, J., Seema, Singh, G. & Arya, S.K. (2018). Immobilization of catalase onto chitosan and chitosan-bentonite complex: A comparative study. Biotechnol. Rep. 18, 251–258. DOI: 10.1016/j.btre.2018.e00258.10.1016/j.btre.2018.e00258Open DOISearch in Google Scholar

32. Seah, T.C.M. & Kaplan, J.G. (1973). Purification and properties of the catalase of bakers’ yeast. J. Biol. Chem. 248(8), 2889–2893.10.1016/S0021-9258(19)44090-8Search in Google Scholar

33. D’Souza, S.F., Deshpande, A. & Nadkarni, G.B. (1987). Effect of permeabilization on the thermostability of catalase in immobilized yeast cells. Biotechnol. Lett. 9(9), 625–628. DOI: 10.1007/BF01033199.10.1007/BF01033199Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering