Accès libre

Graphene oxide flake activation via divinylsulfone – a procedure for efficient β-galactosidase immobilization

   | 16 mars 2019
À propos de cet article

Citez

1. Zhen, Z. & Zhu H. (2017). Structure and Properties of Graphene, Academic Press.10.1016/B978-0-12-812651-6.00001-XSearch in Google Scholar

2. Wang, Y., Li, Z., Wang, J., Li, J. & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212. DOI: 10.1016/j.tibtech.2011.01.008.10.1016/j.tibtech.2011.01.008Open DOISearch in Google Scholar

3. Talat, M. & Srivastava, O.N. (2016). Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications, Advances in Nanomaterials 383–395, DOI: 10.1007/978-81-322-2668-0_1110.1007/978-81-322-2668-0_11Open DOISearch in Google Scholar

4. Lin, L.L., Chi, M.C., Lan, Y.J., Lin, M.G., Juang, T.Y. & Wang, T.F. (2017). Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides. Internat. J. Biol. Macromolec. 117, 1326–1333. DOI: 10.1016/j.ijbiomac.2017.11.153.10.1016/j.ijbiomac.2017.11.153Open DOISearch in Google Scholar

5. Zhang, Y., Zhang, J., Huang, X., Zhou, X., Wu, H. & Guo, S. (2012). Assembly of Graphene Oxide–Enzyme Conjugates through Hydrophobic Interaction. Small 8(1), 154–159. DOI: 10.1002/smll.201101695.10.1002/smll.201101695Open DOISearch in Google Scholar

6. Zhang, J., Zhang, F., Yang, H., Huang, X., Liu, H., Zhang, J. & Guo, S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 26(9), 6083–6085. DOI: 10.1021/la904014z.10.1021/la904014zOpen DOISearch in Google Scholar

7. Bolibok, P., Wisniewski, M., Roszek, K. & Terzyk, A.P. (2017). Controlling enzymatic activity by immobilization on graphene oxide, Sci. Nat. 104: 36. DOI: 10.1007/s00114-017-1459-3.10.1007/s00114-017-1459-3Open DOISearch in Google Scholar

8. Kishore, D., Talat, M., Srivastava, O. & Kayastha, A. (2012). Immobilization of β-Galactosidase onto Functionalized Graphene Nano-sheets Using Response Surface Methodology and Its Analytical Applications, Plos One 7(7):e40708. DOI: 10.1371/journal.pone.0040708.10.1371/journal.pone.0040708Search in Google Scholar

9. Rodrigues, R.R., Berenguer-Murcia, A. & Fernandez-Lafuente, R. (2011). Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes, Adv. Synth. Catal. 353(13), 2216–2238. DOI: 10.1002/adsc.201100163.10.1002/adsc.201100163Open DOISearch in Google Scholar

10. dos Santos, J.C.S., Rueda, N., Barbosa, O., Fernandez-Sanchez, J.F., Medina-Castillo, A.L., Ramon-Marquez, T., Arias-Martos, M.C., Millan-Linares, M.C., Pedroche, J., del Mar Yust, M., Goncalves, L.R.B. & Fernandez-Lafuente, R. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Adv. 5, 20639–20649. DOI: 10.1039/C4RA16926C.10.1039/C4RA16926CSearch in Google Scholar

11. Zucca, P. & Sanjust, E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 19, 14139–14194. DOI: 10.3390/molecules190914139.10.3390/190914139Open DOISearch in Google Scholar

12. Trusek-Holownia, A. (2005). A catalytic membrane for hydrolysis reaction carried out in the two-liquid phase system - Membrane preparation and characterisation, mathematical model of the proces. J. Membr. Sci. 259(1–2), 74–84. DOI: 10.1016/j.memsci.2005.03.04710.1016/j.memsci.2005.03.047Open DOISearch in Google Scholar

13. Miller, C.N. (1959). Use of dinitrosalicyle acid reagent for determination of reducing sugar. Anal. Chem. 81, 426–428.10.1021/ac60147a030Search in Google Scholar

14. Braga, A.R.C., Silva, M.F., Oliveira, J.V., Treichel, H. & Kali l, S.J. (2014). A new approach to evaluate immobilization of β-galactosidase on Eupergit® C: structural, kinetic, and thermal characterization. Quím. Nova 37, 5, 796–803. DOI: 10.5935/0100-4042.20140128.10.5935/0100-4042.20140128Open DOISearch in Google Scholar

16. Niu, D., Tian, X., Mchunu, N.P., Jia, Ch., Singh, S., Liu, X., Prior, B.A. & Lu, F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Elect. J. Biotechnol. 27, 37–43. DOI: 10.1016/j.ejbt.2017.03.001.10.1016/j.ejbt.2017.03.001Open DOISearch in Google Scholar

17. Czyzewska, K. & Trusek, A. (2018), Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications. Pol. J. Chem. Technol. 20(4). DOI: 10.2478/pjct-2018-0052.10.2478/pjct-2018-0052Open DOISearch in Google Scholar

18. Fisher, J., Guidini, C.Z., Soares Santana, L.N., de Resende, M.M., Cardoso, W.L., Ribeiro, E.J. (2013). Optimization and modeling of lactose hydrolysis in a packed bed system using immobilized β-galactosidase from Aspergillus oryzae. J. Mol. Catal. B: Enzymatic 85–86, 178–186. DOI: 10.1016/j.molcatb.2012.09.008.10.1016/j.molcatb.2012.09.008Open DOISearch in Google Scholar

19. Barancewicz, M. & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Pol. J. Chem. Technol. 66(2), 85–90. DOI: 10.2478/s11696-011-0088-0.10.2478/s11696-011-0088-0Open DOISearch in Google Scholar

20. Trusek-Holownia, A. (2008). Wastewater treatment in a microbial membrane bioreactor – a model of the proces. Desalination 221(1–3), 552–558. DOI: 10.1016/j.desal.2007.01.116.10.1016/j.desal.2007.01.116Open DOISearch in Google Scholar

21. Chon, K., Lee, K., Kim, I.S. & Jang, A. (2016). Performance assessment of a submerged membrane bioreactor using a novel microbial consortium. Bioresour.Technol. 210, 2–10. DOI: 10.1016/j.biortech.2016.01.013.10.1016/j.biortech.2016.01.013Open DOISearch in Google Scholar

22. Atra, R., Vatai, G. & Bekassy-Molnar, E. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J. Foof Eng. 67 (3), 325–332. DOI: 10.1016/j.foodeng.2004.04.035.10.1016/j.foodeng.2004.04.035Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering