À propos de cet article

Citez

1. Nawirska, A., Sokół-Łętowska, A., & Kucharska, A.Z. (2007). Antioxidant characteristics of pomace from different fruits. ŻYWNOŚĆ. Nauka. Technol. Jakość. 53, 120–125 (in Polish).Search in Google Scholar

2. Baranowski, K., Baca, E., Salamon, A., Michałowska, D., Meller, D. & Karaś, M. (2009). Possibilities of retrieving and making a practical use of phenolic compounds from waste products: blackcurrant and chokeberry pomace and spent hops. ŻYWNOŚĆ. Nauka. Technol. Jakość. 65(4), 100–109 (in Polish).Search in Google Scholar

3. Oszmiański, J. & Wojdyło, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 221 (6), 809–813. DOI: 10.1007/s00217-005-0002-5.10.1007/s00217-005-0002-5Open DOISearch in Google Scholar

4. Nawirska, A. & Kwasniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 91(2), 221–225. DOI: 10.1016/j.foodchem.2003.10.005.10.1016/j.foodchem.2003.10.005Open DOISearch in Google Scholar

5. Tarko, T., Duda-Chodak, A. & Bebak, A. (2012). Biological activity of selected fruit and vegetable pomaces. ŻYWNOŚĆ. Nauka. Technol. Jakość. 83, 55–65 (in Polish).10.15193/zntj/2012/83/055-065Search in Google Scholar

6. Stojceska, V., Ainsworth, P., Plunkett, A., Ibanoglu, E. & Ibanoglu, S. (2008). Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 87, 554–563. DOI: 10.1016/jfoodeng.2008.01.009.10.1016/jfoodeng.2008.01.009Open DOISearch in Google Scholar

7. Stojceska, V., Ainsworth, P., Plunkett, A. & Ibanoglu, S. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem. 114(1), 226–232. DOI: 10.1016/j.foodchem.2008.09.043.10.1016/j.foodchem.2008.09.043Open DOISearch in Google Scholar

8. Altan, A., McCarthy, K.L. & Maskan, S. (2008). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 84, 231–242. DOI: 10.1016/j.jfoodeng.2007.05.014.10.1016/j.jfoodeng.2007.05.014Search in Google Scholar

9. Masatcioglu, M.T., Yalcin, E., Kim, M., Ryu, G.H., Celik, S. & Köksel H. (2013). Physical and chemical properties of tomato, green tea, and ginseng-supplemented corn extrudates produced by conventional extrusion and CO2 injection process. Eur. Food Res. Technol. 237, 5, 801–809. DOI: 10.1007/s00217-013-2053-3.10.1007/s00217-013-2053-3Open DOISearch in Google Scholar

10. Bisharat, G.I., Lazou, A.E., Panagiotou, N.M., Krokida, M.K. & Maroulis, Z.B. (2015). Antioxidant potential and quality characteristics of vegetable-enriched corn based extruded snacs. J. Food Sci. Technol. 52(7), 3986–4000. DOI: 10.1007/s13197-014-1519-z.10.1007/s13197-014-1519-z448659226139866Search in Google Scholar

11. Mäkilä, L., Laaksonen, O., Diaz, J.M.R., M., Myllymäki, O., Lehtomäki, I., La akso, S. Jahreis, G., Jouppila, K., Larmo, P., Yang, B. & Kallio, H. (2014). Exploiting b lackcurrant juice press residue in extruded snacks, 57, 2, 618–627, DOI: 10.1016/j.lwt.2014.02.005.10.1016/j.lwt.2014.02.005Open DOISearch in Google Scholar

12. Tahvonen, R., Hietanen, A., Sankalo, T., Korteniemi, V.M., Laakso, P., & Kallio, H. (1998). Black currant seeds as a nutrient source in breakfast cereals produced by extrusion cooking, Eur. Food Res.Technol., 206, 5, 360–363.10.1007/s002170050273Search in Google Scholar

13. Wojdyło, A., Oszmiański, J. & Bielicki, P. (2013). Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 61, 2762–2772. DOI: 10.1021/jf304969b.10.1021/jf304969b23461298Open DOISearch in Google Scholar

14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26 (9–10), pp. 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Open DOISearch in Google Scholar

15. Nawirska, A. & Kwaśniewska, M. (2004). Dietary fibre fractions from fruit processing waste. Acta Sci. Pol., 3, 1, 13–20 (in Polish).Search in Google Scholar

16. Yanniotis, S., Petrarki, A. & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J. Food Eng. 80, 594–599. DOI: 10.1016/j.foodeng.2006.06.018.10.1016/j.foodeng.2006.06.018Open DOISearch in Google Scholar

17. Potter, R., Stojceska, V. & Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for children’s diets. LWT- Food Sci. Technol. 51, 537–544. DOI: 10.1016/j.lwt.2012.11.015.10.1016/j.lwt.2012.11.015Open DOISearch in Google Scholar

18. Cortes, R.N.F., Guzman, I.V. & Martinez-Bustos, M. (2014). Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks. Plant Foods Hum. Nutr. 69, 365–371, DOI: 10.1007/s11130-014-0443-8.10.1007/s11130-014-0443-8Open DOISearch in Google Scholar

19. Pieszka, M., Gogol, P., Pietras, M. & Pieszka, M. (2015). Valuable components of dried pomaces of chockeberry, black currant, strawberry, apple and carrot as a source of natura antioxidants and nutraceuticals In the animal diet. Ann. Anim. Sci., 15, 2, 475–491. DOI: 10.2478/aoas-2014-0072.10.2478/aoas-2014-0072Open DOISearch in Google Scholar

20. Larrea, M.A., Chang, Y.K. & Bustos, F.M. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem. 89, 301–308. DOI: 10.1016/j.foodchem.2004.02.037.10.1016/j.foodchem.2004.02.037Open DOISearch in Google Scholar

21. Vasanthan, T., Gaosong, J., Yeung, J. & Li, J. (2002). Dietary fiber profile of barley flours as affected by extrusion cooking. Food Chem. 77, 35–40. DOI: 10.1016/S0308-8146(01)00318-1.10.1016/S0308-8146(01)00318-1Open DOISearch in Google Scholar

22. Kaisangsri, N., Kowalski, R.J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N. & Ganjyal, G.M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT – Food Sci. Technol. 68, 391–399. DOI: 10.1016/j.lwt.2015.12.016.10.1016/j.lwt.2015.12.016Open DOISearch in Google Scholar

23. Ainsworth, P., Ibanoglu, S., Plunkett, A., Ibanoglu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J. Food. Eng. 81, 702–709. DOI: 10.1016/j.jfoodeng.2007.01.004.10.1016/j.jfoodeng.2007.01.004Open DOISearch in Google Scholar

24. Selani, M.M., Brazaca, S.G.C., dos Santos Dias, C.T., Ratnayake, W.S., Flores, R.A. & Bianchini, A. (2014). Characterization and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem. 163, 23–30. DOI: 10.1016./jfoodchem.2014.04.076.10.1016/j.foodchem.2014.04.07624912691Search in Google Scholar

25. Kumar, N., Sarkar, B.C. & Dharma, H.K. (2010). Development and characterization of extruded product using carrot pomace and rice flour. Int. J. Food Sci. Technol. 6, 1–24.10.2202/1556-3758.1824Search in Google Scholar

26. Korkerd, S., Wanlapa, S., Puttanlek, C., Uttapap, D. & Rungsardthong, V. (2016). Expansion and functional properties of extruded snack enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 53(1), 561–570. DOI: 10.1007/s13197-015-2039-1.10.1007/s13197-015-2039-1471146426787975Open DOISearch in Google Scholar

27. Ti, H., Zhang, R., Zhang, M., Wei, Z., Chi, J., Deng, Y. & Hang, Y. (2015). Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem., 178 186–194. DOI: 10.1016/j.foodchem.2015.01.087.10.1016/j.foodchem.2015.01.08725704700Open DOISearch in Google Scholar

28. Zeng, Z., Luo, S., Liu, C., Hu, X., Gong, E., & Miao, J. (2018). Phenolic retention of brown rice after extrusion with mesophilic α –amylase, Food Biosci., 21, 8–13. DOI: 10.1016/j.fbio.2017.10.008.10.1016/j.fbio.2017.10.008Open DOISearch in Google Scholar

29. Faraji, H. & Lindsay, R.C. (2004). Characterization of the antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J. Agric. Food Chem., 52 (23), 7164–7171. DOI: 10.1021/jf035291k.10.1021/jf035291k15537333Open DOISearch in Google Scholar

30. Lončarić, A., Pichler, A., Trtinjak, I., Piližota, V. & Kopjar, M. (2016). Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT-Food Sci. Technol., 73, 391–396. DOI: 10.1016/j.lwt.2016.06.040.10.1016/j.lwt.2016.06.040Open DOISearch in Google Scholar

31. Peinado, J., Lerma, N.L.D. & Peinado, R.A., (2010). Synergistic antioxidant interaction between sugars and phenolics from a sweet wine. Eur. Food Res.Technol., 231 (3), 363–370. DOI: 10.1007/s00217-010-1279-6.10.1007/s00217-010-1279-6Open DOISearch in Google Scholar

32. Jakobek, L. Drenjancevic, M., Juki, V. & Seruga, M. (2012). Phenolic acids, flavonols, anthocyanins, and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries, Scientia Hortic. 147, 56–63. DOI: 10.1016/j.scienta.2012.09.006.10.1016/j.scienta.2012.09.006Open DOISearch in Google Scholar

33. Hirth, M., Preiβ, R., Mayer-Miebach, E. & Schuchmann, H.P. (2015). Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidis and hydroxycinnamic acid as the main bioactive chokeberry polyphenols. LWT – Food Sci. Technol., 62, 511–516. DOI: 10.1016/j.lwt.2014.08032.10.1016/j.lwt.2014.08032Open DOISearch in Google Scholar

34. Sójka, M., & Król, B. (2009). Composition of industrial seedless black currant pomace. Eur. Food Res. Technol., 228, 597–605, DOI: 10.1007/s00217-008-0968-x.10.1007/s00217-008-0968-xOpen DOISearch in Google Scholar

35. Anttonen, M.J., & Karjalainen, R.O. (2006). High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J. Agric. Food Chem., 54 (20), 7530–7538, DOI: 10.1021/jf0615350.10.1021/jf061535017002418Open DOISearch in Google Scholar

36. Matsumoto, H., Hanamura, S., Kawakami, T., Sato, Y. & Hirayama, M. (2001). Preparative-scale isolation of four anthocyanin components of black currant (Ribes nigrum L.) fruits. J. Agric. Food Chem., 49 (3), 1541–1545, DOI: 10.1021/jf001245y.10.1021/jf001245y11312893Open DOISearch in Google Scholar

37. Ostrowska, B. & Rzemykowska, Z. (1998). Antioxidant activity of polyphenolic plant materials in the prevention and treatment of atherosclerosis. Herba Pol., 4, 417–428 (in Polish).Search in Google Scholar

38. Zheng, W. & Wang, S. (2003). Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem. 51(2), 502–509. DOI:10.1021/jf020728u.10.1021/jf020728u12517117Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering