Accès libre

Biosorption of Cu2+ and Ni2+ Ions From Aqueous Solutions Using Waste Dried Activated Sludge Biomass

À propos de cet article

Citez

1. Pagnanelli, F., Mainelli, S., Bornoroni, L., Dionisi, D. & Toro, L. (2009). Mechanisms of heavy-metal removal by activated sludge. Chemosphere. 75, 1028-1034. DOI: 10.1016/j. chemosphere.2009.01.043.10.1016/j.chemosphere.2009.01.043Open DOISearch in Google Scholar

2. Markou, G., Mitrogiannis, D., Çelekli, A., Bozkurt, H., Georgakakis, D. & Chrysikopoulos, C.V. (2015). Biosorption of Cu2+ and Ni2+ by Arthrospira platensis with different biochemical compositions. Chem. Eng. J. 259, 806-813. https://DOI.org/10.1016/j.cej.2014.08.03710.1016/j.cej.2014.08.037Open DOISearch in Google Scholar

3. Azouaou, N., Sadaoui, Z., Djaafri, A. & Mokaddem, H. (2010). Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 184(1), 126-134. https://DOI. org/10.1016/j.jhazmat.2010.08.01410.1016/j.jhazmat.2010.08.014Open DOISearch in Google Scholar

4. Jai, P.H., Wook, J.S., Kyu, Y.J., Gil, K.B. & Mok, L.S. (2007). Removal of heavy metals using waste eggshell. J. Environ. Sci. 19(12), 1436-1441. http://dx.DOI.org/10.1016/S1001-0742(07)60234-410.1016/S1001-0742(07)60234-4Open DOISearch in Google Scholar

5. Aslan, S., Ozturk, M. & Yildiz, S. (2016). Sorption of heavy metals on biosludge. Eur. Sci. J. ESJ, 12(10), ISSN: 1857-7881 (Print), ISSN: 1857-7431 (Online).Search in Google Scholar

6. Jianlong, W., Yi, Q., Horan, N. & Stentiford, E. (2000). Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresour. Technol. 75(2), 157-161. https://DOI.org/10.1016/S0960-8524(00)00041-910.1016/S0960-8524(00)00041-9Open DOISearch in Google Scholar

7. Liu, D., Tao, Y., Li, K. & Yu, J. (2012). Infl uence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge. Bioresour. Technol. 126, 56 63.http://dx.DOI.org/10.1016/j.biortech.2012.09.02510.1016/j.biortech.2012.09.02523073089Open DOISearch in Google Scholar

8. Pamukoglu, M.Y. & Kargi, F. (2006). Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge. Process Biochem. 41(5), 1047-1054. https://DOI. org/10.1016/j.procbio.2005.11.01010.1016/j.procbio.2005.11.010Search in Google Scholar

9. Wei, D., Zhang, K., Wang, S., Sun, B., Wu, N., Xu, W., Du, B. & Wei, Q. (2017). Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fl uorescence approach. Int. Biodeterior. Biodegrad. 124, 2017.326-333. https://DOI.org/10.1016/j.ibiod.2017.03.01810.1016/j.ibiod.2017.03.018Open DOISearch in Google Scholar

10. Yuncu, B., Sanin, F.D. &Yetis, U. (2006). An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J. Hazard. Mater. 137(2), 990-997. https:// DOI.org/10.1016/j.jhazmat.2006.03.02010.1016/j.jhazmat.2006.03.02016713077Search in Google Scholar

11. Zhou, Y., Zhang, Z., Zhang, J. & Xia, S. (2016). New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. J. Environ Sci., 45, 248-256. https://DOI.org/10.1016/j.jes.2016.03.00710.1016/j.jes.2016.03.00727372140Open DOISearch in Google Scholar

12. Filipkowska, U. & Kuczajowska-Zadrożna, M. (2016). Investigation of the adsorption/desorption equilibria of Cd (II), Zn (II) and Cu (II) ions on/from immobilized digested sludge using biosurfactants. Environ. Earth Sci. 75(9), 814. DOI: 10.1007/s12665-016-5674-6.10.1007/s12665-016-5674-6Open DOISearch in Google Scholar

13. Weng, C.H., Chang, E.E. & Chiang, P.C. (2001). Characteristics of new coccine dye adsorption onto digested sludge particulates. Water Sci. Technol. 44(10), 279-284.10.2166/wst.2001.0641Search in Google Scholar

14. Cojocaru, C., Diaconu, M., Cretescu, I., Savić, J. & Vasić, V. (2009). Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids Surf. A: Physicochemical and Engineering Aspects, 335(1), 181-188. https://DOI.org/10.1016/j. colsurfa.2008.11.00310.1016/j.colsurfa.2008.11.003Open DOISearch in Google Scholar

15. Kumar, R. Bishnoi, N.R. & Bishnoi, K. (2008). Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem. Eng. J. 135(3), 202-208.https://DOI.org/10.1016/j.cej.2007.03.00410.1016/j.cej.2007.03.004Open DOISearch in Google Scholar

16. Tunali, Y., Karaca, H., Tay, T., Kivanç, M. & Bayramoglu, G. (2009). Biosorption of Pb (II) from aqueous solutions by a fungal biomass in a batch system: Equilibrium and kinetic studies, Asian J. Chem. 21(8), 6015.Search in Google Scholar

17. Zhang, Q., Hu, J., Lee, D.J., Chang, Y. & Lee, Y.J. (2017). Sludge treatment: Current research trends, Bioresour. Technol. 243, 1159-1172, http://dx.DOI.org/10.1016/j.biortech.2017.07.07010.1016/j.biortech.2017.07.070Open DOISearch in Google Scholar

18. Alexandre, V.M.F., Castro, T.M.S., Araújo, L.V., Santiago, V.M.J., Freire, D.M.G. & Cammarota, M.C. (2015). Minimizing solid wastes in an activated sludge system treating oil refi nery wastewater. Chem. Eng. Process. http://dx.DOI.org/10.1016/j.cep.2015.10.021.10.1016/j.cep.2015.10.021Open DOISearch in Google Scholar

19. Li, C. & Ju, L.K. (2018). Enhancement of resource recovery and sludge digestion by cultivation of phagotrophic algae with alkali-pretreated waste activated sludge and waste ketchup. Process Saf. Environ. Prot.113 233-241. https://DOI.org/10.1016/j.psep.2017.10.00410.1016/j.psep.2017.10.004Open DOISearch in Google Scholar

20. Abdelfattah, I., Ismail, A.A., Sayed. F.A., Almedolab. A. & Aboelghait, K.M. (2016). Biosorption of heavy metals ions in real industrial wastewater using peanut husk as effi cient and cost effective adsorbent. Environ. Nanotechnol. Monit. Man. 6: 176-183. http://dx.DOI.org/10.1016/j.enmm.2016.10.00710.1016/j.enmm.2016.10.007Open DOISearch in Google Scholar

21. Nuhoglu, Y. & Oguz, E. (2003). Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Prosess Biochem. 38, 1627-1631. DOI: 10.1016/S0032-9592(03)00055-4.10.1016/S0032-9592(03)00055-4Open DOISearch in Google Scholar

22. Hammaini, A., Gonzalez, F., Ballester, A., Blazquez, M.L. & Munoz, J.A. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manage.84, 419-426. DOI: 10.1016/j.jenvman.2006.06.015.10.1016/j.jenvman.2006.06.01516979281Open DOISearch in Google Scholar

23. Kargi, F. & Cikla, S. (2006). Biosorption of zinc(II) ions onto powdered waste sludge (PWS): Kinetics and isotherms. Enzyme Microb. Technol. 38, 705-710. DOI: 10.1016/j.enzmictec.2005.11.00510.1016/j.enzmictec.2005.11.005Open DOISearch in Google Scholar

24. Laurent, J., Casellas, M., Pons, M.N. & Dagot, C. (2010). Cadmium biosorption by ozonized activated sludge: The role of bacterial fl ocs surface properties and mixed liquor composition. J. Hazard. Mater. 183, 256-263. DOI: 10.1016/j. jhazmat.2010.07.019.10.1016/j.jhazmat.2010.07.019Open DOISearch in Google Scholar

25. Ong, S.A., Toorisaka, E., Hirata, M. & Hano, T. (2013). Comparative study on kinetic adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solutions using activated sludge and dried sludge. App. Water Sci. 3, 321-325. DOI: 10.1007/s13201-013-0084-3.10.1007/s13201-013-0084-3Open DOISearch in Google Scholar

26. Rao, P.R. & Bhargavi, C. (2013). Studies on biosorption of heavy metals using pretreated biomass of fungal species. Int. J. Chem. Chem. Eng. 3(3), 171-180, ISSN 2248-9924.Search in Google Scholar

27. Yang, C., Wang, J., Lei, M., Xie, G., Zeng, G. & Luo, S. (2010). Biosorption of zinc (II) from aqueous solution by dried activated sludge. J. Environ. Sci. 22(5), 675-680. https://DOI.org/10.1016/S1001-0742(09)60162-510.1016/S1001-0742(09)60162-5Open DOISearch in Google Scholar

28. Goodwin, J.A.S. & Forster, C.F. (19859. A further examination into the composition of activated sludge surfaces in relation to their settlement characteristics. Water Res. 19(4), 527-533. https://DOI.org/10.1016/0043-1354(85)90045-410.1016/0043-1354(85)90045-4Open DOISearch in Google Scholar

29. Horan, N.J. & Eccles, C.R. (1986). Purifi cation and characterization of extracellular polysaccharide from activated sludges. Water Res. 20(11), 1427-1432. https://DOI.org/10.1016/0043-1354(86)90142-910.1016/0043-1354(86)90142-9Open DOISearch in Google Scholar

30. Chang, D., Fukushi, K. & Ghosh, S. (1995). Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ. Res. 67(5), 822-827. https://DOI.org/10.2175/106143095X13174510.2175/106143095X131745Open DOISearch in Google Scholar

31. Durmaz, B. & Sanin, F.D. 2001. Effect of carbon to nitrogen ratio on the composition of microbial extracellular polymers in activated sludge. Water Sci. Technol. 44(10), 221-229.10.2166/wst.2001.0626Search in Google Scholar

32. APHA, AWWA, WPCF (1995) Standard Methods for the Examination of water and wastewater, 19th ed. American Public Health Association/American Water Works Association/ Water Environment Federation, Washington DC, USA.Search in Google Scholar

33. Jamshidi, M., Jamshidi, A. & Mehrdadi, N. (2012). Application of sewage dry sludge in concrete mixtures. Asian J. Civil Eng (building and housing), 13(3), 365-375.Search in Google Scholar

34. Mojapelo, S.K. (2017). Characterisation of wastewater dry sludge for lightweight concrete application, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Master Thesis, 107 p.Search in Google Scholar

35. Mun, K.J. (2007). Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Construct. Built. Mater. 21(7), 1583-1588. https://DOI.org/10.1016/j. conbuildmat.2005.09.00910.1016/j.conbuildmat.2005.09.009Open DOISearch in Google Scholar

36. Ata, A., Nalcaci, O.O. & Ovez, B. (2012). Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Res. 1(2), 194-204. https://DOI.org/10.1016/j. algal.2012.07.001.10.1016/j.algal.2012.07.001Open DOISearch in Google Scholar

37. Chen, H., Dou, J. & Xu, H. (2017). Removal of Cr (VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr (III) and biosorption. Appl. Surf. Sci. 425, 728-735. http://dx.DOI.org/10.1016/j.apsusc.2017.07.05310.1016/j.apsusc.2017.07.053Open DOISearch in Google Scholar

38. Rocha, C.G., Zaia, D.A.M., da Silva Alfaya, R.V. & da Silva Alfaya, A.A. (2009). Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effl uents. J. Hazard. Mater. 166(1), 383-388. https://DOI.org/10.1016/j.jhazmat.2008.11.07410.1016/j.jhazmat.2008.11.074Open DOISearch in Google Scholar

39. Nouha, K., Hoang, N.V. & Tyagi, R.D. (2016). Fourier transform infrared spectroscopy and liquid chromatography- mass spectrometry study of extracellular polymer substances produced on secondary sludge fortifi ed with crude glycerol. J. Mater. Sci. Eng. 5:3. http://dx.DOI.org/10.4172/2169-0022.100024010.4172/2169-0022.1000240Open DOISearch in Google Scholar

40. Yahaya, Y.A., Don, M.M. & Bhatia, S. (2009). Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. J. Hazard. Mater. 161(1), 189-195. https://DOI.org/10.1016/j.jhazmat.2008.03.10410.1016/j.jhazmat.2008.03.104Open DOISearch in Google Scholar

41. Badireddy, A.R., Chellam, S., Gassman, P.L., Engelhard, M.H., Lea, A.S. & Rosso, K.M. (2010). Role of extracellular polymeric substances in biofl occulation of activated sludge microorganisms under glucose-controlled conditions. Wa ter Res. 44(15), 4505-4516. https://DOI.org/10.1016/j.watres. 2010.06.02410.1016/j.watres.2010.06.024Open DOISearch in Google Scholar

42. Yin, C., Meng, F. & Chen, G.H. (2015). Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria. Water Res. 68, 740-749. http://dx.DOI.org/10.1016/j.watres.2014.10.04610.1016/j.watres.2014.10.046Open DOISearch in Google Scholar

43. Chassary, P., Vincent, T. & Guibal, E. (2004). Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use. React. Funct. Polym. 60, 137-149. https://DOI.org/10.1016/j.reactfunctpolym.2004.02.01810.1016/j.reactfunctpolym.2004.02.018Open DOISearch in Google Scholar

44. Guzman, J., Saucedo, I., Revilla, J., Navarro, R. & Guibal, E. (2003). Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities. Int. J. Biol. Macromolecules. 33(1), 57-65.https://DOI.org/10.1016/S0141-8130(03)00067-910.1016/S0141-8130(03)00067-9Open DOISearch in Google Scholar

45. Bermúdez, Y.G., Rico, I.L.R., Bermúdez, O.G. & Guibal, E. (2011). Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chem. Eng. J. 66, 122-131. http://dx.DOI.org/10.1016/j.cej.2010.10.038.10.1016/j.cej.2010.10.038Open DOISearch in Google Scholar

46. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J. & Tchobanoglous, G. (2005). Water Treatment: Priciples and Design, 2nd Edition, John Wiley and Son, Inc. 1947p.Search in Google Scholar

47. Aslan, S. & Topcu, U.S. (2015). Adsorption of nickel and copper from water by waste nitrifi cation organisms, ISITES2015- -3rd International Symposium on Innovative Technologies in Engineering and Science, pp: 1955-1963, Valencia, Spain, 2015.Search in Google Scholar

48. Katal, R., Baei, M.S., Rahmati, H.T. & Esfendian, H. (2012). Kinetic, isotherm, and thermodynamic study of nitrate adsorption from aqueous solution using modifi ed rice husk. J. Industrial Chem. 18, 295-302. http://dx.DOI.org/10.1016/j.jiec.2011.11.03510.1016/j.jiec.2011.11.035Open DOISearch in Google Scholar

49. Demirbas, E., Dizge, N., Sulak, M.T. & Kobya, M. (2009). Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 148(2), 480-487. https://DOI.org/10.1016/j.cej.2008.09.02710.1016/j.cej.2008.09.027Open DOISearch in Google Scholar

50. Aslan, S., Polat, A. & Topcu, U.S. (2015), Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell. Journal of Environmental Engineering and Landscape Management, 23:3, 221-229, DOI: 10.3846/16486897.2015.1005015.10.3846/16486897.2015.1005015Open DOISearch in Google Scholar

50. Kilic, M., Varol, E.A. & Putun, A.E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 189, 397-403. http://dx.DOI.org/10.1016/j.jhazmat.2011.02.05110.1016/j.jhazmat.2011.02.05121420235Open DOISearch in Google Scholar

52. Sljivic, M., Smiciklas, I., Plecas, I. & Mitric, M. (2009). The infl uence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ ion. Chem. Eng. J. 148, 80-88. http://dx.DOI.org/10.1016/j.cej.2008.08.00310.1016/j.cej.2008.08.003Open DOISearch in Google Scholar

53. Ghasemi, Z., Seif, A., Ahmadi, T.S., Zargar, B., Rashidi, F. & Rouzbahani, G.M. (2012). Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution. Adv. Powder Technol. 23(2), 148-156. https://DOI.org/10.1016/j.apt.2011.01.00410.1016/j.apt.2011.01.004Open DOISearch in Google Scholar

54. Rahchamani, J., Mousavi, H.Z. & Behzad, M. (2011). Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. Desalination, 267(2), 256-260. https://DOI.org/10.1016/j.10.1016/jOpen DOISearch in Google Scholar

desal.2010.09.03610.1088/1475-7516/2010/11/036Search in Google Scholar

55. Doğan, M., Ozdemir, Y. & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pig. 75(3), 701-713. https://DOI. org/10.1016/j.dyepig.2006.07.02310.1016/j.dyepig.2006.07.023Open DOISearch in Google Scholar

56. Mezenner, N.Y. & Bensmaili, A. (2009). Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide- eggshell waste. Chem. Eng. J. 147(2), 87-96. https://DOI. org/10.1016/j.cej.2008.06.02410.1016/j.cej.2008.06.024Open DOISearch in Google Scholar

57. Ahmad, R., Kumar, R. & Haseeb, S. (2012). Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity. Arabian J. Chem. 5, 353-359. https://DOI.org/10.1016/j.arabjc.2010.09.00310.1016/j.arabjc.2010.09.003Open DOISearch in Google Scholar

58. Chairat, M., Rattanaphani, S., Bremner, J.B. & Rattanaphani, V. (2005). An adsorption and kinetic study of lac dyeing on silk. Dyes Pig. 64, 231-241. http://dx.DOI.org/10.1016/j.dyepig.2004.06. 09.10.1016/j.dyepig.2004.06.09Open DOISearch in Google Scholar

59. Ayoob, S., Gupta, A.K., Bhakat, P.B. & Bhat, V.T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fl uoride from water using alumina cement granules. Chem.Eng. J. 140(1), 6-14. https://DOI.org/10.1016/j.cej.2007.08.02910.1016/j.cej.2007.08.029Open DOISearch in Google Scholar

60. Coman, V., Robotin, B. & Ilea, P. (2013). Nickel recovery/ removal from industrial wastes: A review. Resour. Conserve. Recycle. 73, 229-238. https://DOI.org/10.1016/j. resconrec.2013.01.01910.1016/j.resconrec.2013.01.019Open DOISearch in Google Scholar

61. Wardani, A.K., Hakim, A.N., Khoiruddin, Destifen, W., Goenawan, A. & Wenten, I.G. (2017). Study on the infl uence of applied voltage and feed concentration on the performance of electrodeionization in nickel recovery from electroplating wastewater, Proceedings of the 1st International Process Metallurgy Conference (IPMC 2016) AIP Conf. Proc. 1805. DOI: 10.1063/1.4974415.10.1063/1.4974415Open DOISearch in Google Scholar

62. Davidson, J. (2010). Removal of nickel (II) from aqueous solutions by polymer-enhanced ultrafi ltration, A major qualifying project submitted to the faculty of Worcester Polytechnic Institute in partial fulfi llment of the requirements for the Bachelor of Science Degree, Shanghai, China Project Center 73 p.Search in Google Scholar

63. Dhokpande, S. & Kaware, J. (2016). Regeneration and recovery of nickel-a review. Int. J. Sci. Eng. App. Sci. (IJSEAS)- 2, 7, ISSN: 2395-3470.Search in Google Scholar

64. Ramamurthi, V., Priya, P.G., Saranya, S. & Basha, C.A. (2009). Recovery of nickel (II) ions from electroplating rinse water using hectorite clay. Modern App. Sci. 3(9), 37. http:// dx.DOI.org/10.5539/mas.v3n9p3710.5539/mas.v3n9p37Open DOISearch in Google Scholar

65. Deng, L., Su, Y., Su, H., Wang, X. & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J. Hazard. Mater. 143 2007. 220-225. https://DOI.org/10.1016/j.jhazmat.2006.09.00910.1016/j.jhazmat.2006.09.00917049733Open DOISearch in Google Scholar

66. Gupta, V.K. & Rastogi, A. (2008). Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 154(1), 347-354. https://DOI.org/10.1016/j.jhazmat.2007.10.03210.1016/j.jhazmat.2007.10.03218053641Open DOISearch in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering