Accès libre

Simulation and sensitivity analysis for heavy linear paraffins production in LAB production Plant

À propos de cet article

Citez

1. Zahedi, G., Yaqubi, H. & Ba-Shammakh, M. (2009). Dynamic modeling and simulation of heavy paraffin dehydrogenation reactor for selective olefin production in linear alkyl benzene production plant. Appl. Catal. A. 358 (1), 1-6. DOI: 10.1016/j.apcata.2009.01.043.10.1016/j.apcata.2009.01.043Search in Google Scholar

2. Bahasin, M.M., McCain, J.H., Vora, B.V., Imai, T. & Pujado, P.R. (2001). Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A. 221 (1-2), 397-419. DOI: 10.1016/s0926-860x(01)00816-x.10.1016/S0926-860X(01)00816-XSearch in Google Scholar

3. Kocal, J.A., Vora, B.V. & Imati, T. (2001). Production of Linear alkylbenzenes. Appl. Catal. A. 221 (1-2), 295. DOI: 10.1016/s0926-860x(01)00808-0.10.1016/S0926-860X(01)00808-0Search in Google Scholar

4. Yangyou, H., Hongye, S., Jingwei, L., Shengjing, M., Jian, C. & Jun, W. (2002). Simulation and Optimization of Linear Alkylbenzenes Distillation Process. Dev. Chem. Eng. Mineral Process. 10, 33-45. DOI: 10.1002/apj.5500100104.10.1002/apj.5500100104Search in Google Scholar

5. Dolganova, I.O., Dolganov, I.M., Ivashkina, E.N., Ivanchina, E.D. & Romanovskiy, R.V. (2012). Development of approach to modeling and optimization of non-stationary catalytic processes in oil refining and petrochemistry. Pol. J. Chem. Tech. 14 (4), 22-29. DOI: 10.2478/v10026-012-0097-y.10.2478/v10026-012-0097-ySearch in Google Scholar

6. Bhutani, N., Ray, A.K. & Rangaiah, G.P. (2006). Modeling, simulation, and multi-objective optimization of an industrial hydro-cracking unit. Ind. Eng. Chem. Res. 45 (4), 1354-1372. DOI: 10.1021/ie050423f.10.1021/ie050423fSearch in Google Scholar

7. More, R.K., Bulasara, V.K., Uppaluri, R. & Banjara, V.R. (2010). Optimization of crude distillation system using aspen plus: Effect of binary feed selection on grass-root design. Chem. Eng. Res. Design. 88 (2), 121-134. DOI: 10.1016/j. cherd.2009.08.004.Search in Google Scholar

8. Lei, Z., Yi, C. & Yang., B. (2013). Design, optimization, and control of reactive distillation column for synthesis of tertamyl ethyl ether. Chem. Eng. Res. Design. 91 (5), 819-830. DOI: 10.1016/j.cherd.2012.08.013.10.1016/j.cherd.2012.08.013Search in Google Scholar

9. Bai, Z., Ma, H., Zhang, H., Ying, W. & Fang, D. (2013). Process simulation of dimethyl ether synthesis via methanol vapor phase dehydration. Pol. J. Chem. Tech. 15 (2), 122-127. DOI: 10.2478/pjct-2013-0034.10.2478/pjct-2013-0034Search in Google Scholar

10. Askari, A., Karimi, H., Rahimi, M.R. & Ghanbari, M. (2012). Simulation and modeling of catalytic reforming process. Petrol. Coal. 54 (1), 76-84.Search in Google Scholar

11. West, A.H., Posarac, D. & Ellis, N. (2008). Assessment of four biodiesel production processes using HYSYS Plant, Bioresour. Technol. 99 (4), 6587-6601. DOI: 10.1016/j.biortech. 2007.11.046.Search in Google Scholar

12. Agarwal, M., Singh, K. & Chaurasia S.P. (2012). Simulation & sensitivity analysis for biodiesel production in a reactive distillation column. Pol. J. Chem. Tech. 14 (3), 59-65. DOI: 10.2478/v10026-012-0085-2.10.2478/v10026-012-0085-2Search in Google Scholar

13. Seader, J.D. & Henley Ernest, J. (2006). separation process principles, 2nd edition, John Wiley & Sons, Inc., Hoboken.Search in Google Scholar

14. Boston, J.F. & Sullivan, S.L. (1974). A new class of solution methods for multi components, multistage separation processes. Can. J. Chem. Eng. 52 (1), 52-63. DOI: 10.1002/ cjce.5450520108. 10.1002/cjce.5450520108Search in Google Scholar

eISSN:
1899-4741
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering