Accès libre

Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts

À propos de cet article

Citez

1. Hong, S. & Myung, S. (2007). Nanotube electronics: a fl exible approach to mobility. Nat. Nanotechnology 2, 207-208. DOI: 10.1038/nnano.2007.89.10.1038/nnano.2007.89Search in Google Scholar

2. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., & Fischer, J.E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756-758.10.1038/41972Search in Google Scholar

3. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T. & Smalley, R.E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49-54. DOI: 10.1016/0009-2614(95)00825-O.10.1016/0009-2614(95)00825-OSearch in Google Scholar

4. Qiu, J., An, Y., Zhao, Z., Li, Y. & Zhou, Y. (2004). Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method. Fuel Process. Technol. 85, 913-920. DOI: 10.1016/j.fuproc.2003.11.033.10.1016/j.fuproc.2003.11.033Search in Google Scholar

5. Sengupta, J. & Chacko, J. (2009). Growth temperature dependence of partially Fe fi lled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692-4697. DOI: 10.1016/j. jcrysgro.2009.09.029.Search in Google Scholar

6. Deck, Ch.P. & Vecchio, K. (2006). Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 44, 267-275. DOI: 10.1016/j. carbon.2005.07.023.Search in Google Scholar

7. Journet, C., Picher, M. & Jourdain, V. (2012). Carbon nanotube synthesis: from large-scale production to atom-by- -atom growth. Nanotechnology 13, 1-19. DOI: 10.1088/0957-4484/23/14/142001.10.1088/0957-4484/23/14/142001Search in Google Scholar

8. Esconjauregui, S., Whelan, C.M. & Maex, K. (2009). The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47, 659-669. DOI: 10.1016/j.carbon.2008.10.047.10.1016/j.carbon.2008.10.047Search in Google Scholar

9. Liu, B.C., Yu, B. & Zhang, M.X. (2005). Catalytic CVD synthesis of double-walled carbon nanotubes with a narrow distribution of diameters over Fe-Co/MgO catalyst. Chem. Phys. Lett. 407, 232-235. DOI: 10.1016/j.cplett.2005.03.093.10.1016/j.cplett.2005.03.093Search in Google Scholar

10. MacKenzie, K., Dunens, O., Harris, A.T. (2009). A review of carbon nanotube purifi cation by microwave assisted acid digestion. Sep. Purif. Technol. 66, 209-222. DOI: 10.1016/j. seppur.2009.01.017.Search in Google Scholar

11. Mauron, P., Emmenegger, Ch., Sudan, P., Wenger, P., Rentsch, S. & Züttel, A. (2003). Fluidised-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO, Diamond Relat. Mater. 12, 780-785. DOI: 10.1016/S0925-9635(02)00337-0.10.1016/S0925-9635(02)00337-0Search in Google Scholar

12. Weast, R.C. (1980). CRC Handbook of Chemistry and Physics (60th ed.). CRC Press, Boca Raton, Florida, USA.Search in Google Scholar

13. Schwarz, J.A., Contescu, C. & Contescu, A. (1995). Methods for preparation of catalytic materials. Chem. Rev. 95, 477-510. DOI: 10.1021/cr00035a002.10.1021/cr00035a002Search in Google Scholar

14. Li, Y.L., Kinloch, I.A., Shaffer, M.S.P., Geng, J., Johnson, B., Windle, A.H. (2004). Synthesis of single-walled carbon nanotubes by a fl uidized-bed method. Chem. Phys. Lett. 384, 98-102. DOI: 10.1016/j.cplett.2003.11.070.10.1016/j.cplett.2003.11.070Search in Google Scholar

15. See, C.H. & Harris, A.T. (2007). On the development of fl uidized bed chemical vapour deposition for large-scale carbon nanotube synthesis: Infl uence of synthesis temperature. Aust. J. Chem. 60, 541-546. DOI: 10.1071/CH06398.10.1071/CH06398Search in Google Scholar

16. Chai, S.P., Zein, S.H.S. & Mohamed, A.R. (2007). The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation. Appl. Catal. A: General. 326, 173-179. DOI: 10.1016/j.apcata.2007.04.020.10.1016/j.apcata.2007.04.020Search in Google Scholar

17. Dikonimos Makris, Th., Giorgi, L., Giorgi, R., Lisi, N. & Salernitano, E. (2005). CNT growth on alumina supported nickel catalyst by thermal CVD. Diamond Relat. Mater. 14, 815-819. DOI: 10.1016/j.diamond.2004.11.001.10.1016/j.diamond.2004.11.001Search in Google Scholar

18. Edwards, E.R., Antunes, E.F., Botelho, E.C., Baldan, M.R. & Corat, E.J. (2011). Evaluation of residual iron in carbon nanotubes purifi ed by acid treatments. Appl. Surf. Sci. 258, 641-648. DOI: 10.1016/j.apsusc.2011.07.032.10.1016/j.apsusc.2011.07.032Search in Google Scholar

19. Lehman, J.H., Terrones, M., Mansfi eld, E., Hurst, K.E. & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581-2602. DOI: 10.1016/j. carbon.2011.03.028.Search in Google Scholar

20. Narkiewicz, U., Podsiadły, M., Jędrzejewski, R. & Pełech, I. (2010). Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials. Appl. Catal. A: General 384, 27-35. DOI: 10.1016/j.apcata.2010.05.050.10.1016/j.apcata.2010.05.050Search in Google Scholar

21. Thomas, J.M. (1965). Microscopic Studies of Graphite Oxidation. Chemistry and Physics of Carbon; Walker, P.L., Jr., Ed.; Marcel Dekker: New York, 1, 121-202.Search in Google Scholar

22. Becker, M. J., Xia, W., Tessonnier, J.P., Blume, R., Yao, L., Schlogl R. & Muhler M. (2011). Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon 49, 5253-5264. DOI: 10.1016/j.carbon.2011.07.043.10.1016/j.carbon.2011.07.043Search in Google Scholar

23. McKee, G.S.B. & Vecchio, K.S. (2006). Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes. J. Phys. Chem. B 110, 1179-1186. DOI: 10.1021/jp054265h.10.1021/jp054265h16471661Search in Google Scholar

24. Koos, A.A., Dillon, F., Obraztsova, E.A., Crossley, A. & Grobert, N. (2010). Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon. 48, 3033-3041. DOI: 10.1016/j.carbon.2010.04.026.10.1016/j.carbon.2010.04.026Search in Google Scholar

25. Irani, F., Jannesari, A. & Bastani, S. (2013). Effect of fl uorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog. Org. Coat. 76, 375-383. DOI: 10.1016/j.porgcoat. 2012.10.023].Search in Google Scholar

26. Ko, F-H., Lee, C-Y., Ko, C-J. & Chu, T-C. (2005). Purifi cation of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon. 43, 727-733. DOI: 10.1016/j.carbon.2004.10.042].10.1016/j.carbon.2004.10.042Search in Google Scholar

27. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M.S. & Selegue, J.P. (2002). Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotubes chemistry. Nano Lett. 2, 615-619. DOI: 10.1021/nl020297u 10.1021/nl020297uSearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering