Accès libre

Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation

À propos de cet article

Citez

1. Bhaumik, A. & Tatsumi, T. (2000). Organically Modifi ed Titanium-Rich Ti-MCM-41, Effi cient Catalysts for Epoxidation Reactions. J. Catal., 189, 31-39.10.1006/jcat.1999.2690Search in Google Scholar

2. Grün, M., Unger, K.K., Matsumoto, A. & Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mat., 27, 207-216.10.1016/S1387-1811(98)00255-8Search in Google Scholar

3. Wróblewska, A. & Wajzberg, J. (2011). Applying of the atmospheric pressure method for epoxidation of allyl alcohol over titanium silicalite TS-2 catalyst. Oxid. Commun. 34(2), 339-248.Search in Google Scholar

4. Fajdek, A., Wróblewska, A. & Milchert, E. (2011). Selective liquid-phase oxidation of allyl alkohol to glycidol over MWW type titanosilicalite. Reac. Kinet. Mech. Cat. 103, 451-462. DOI: 0.1007/s11144-011-0312-5.10.1007/s11144-011-0312-5Search in Google Scholar

5. Wróblewska, A. & Fajdek, A. (2011) Catalytic epoxidation of allyl alcohol with hydrogen peroxide under autogenic pressure over Ti-MWW catalyst. J. Adv. Oxid. Technol. 14(1), 122-130.10.1515/jaots-2011-0115Search in Google Scholar

6. Wróblewska, A. & Fajdek, A. (2010). Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J. Hazard. Mater. 179, 258-265. DOI: 10.1016/j.jhazmat.2010.02.088.10.1016/j.jhazmat.2010.02.088Open DOISearch in Google Scholar

7. Wróblewska, A., Fajdek, A., Wajzberg, J. & Milchert, E. (2009). Epoxidation of allyl alcohol over mesoporous Ti- MCM-41 catalyst. J. Hazard. Mater. 170, 405-410. DOI: 10.1016/j. jhazmat.2009.04.082.10.1016/j.jhazmat.2009.04.082Open DOISearch in Google Scholar

8. Liu, X., Wang, X., Guo, X., Li, G. & Yan, H. (2004). Regeneration of lamina TS-1 catalyst in the epoxidation of propylene with hydrogen peroxide. Catal. Lett., 97, 223-229.10.1023/B:CATL.0000038588.57599.c7Search in Google Scholar

9. Liu, H., Lua,G., Guoa, Y. & Wang, J. (2005). Deactivation and regeneration of TS-1/diatomite catalyst for hydroxylation of phenol in fi xed-bed reactor. Chem. Eng. J., 108, 187-192. DOI: 10.1016/j.cej.2005.01.011.10.1016/j.cej.2005.01.011Open DOISearch in Google Scholar

10. Sheldon, R.A., Arends, I.W.C.E. & Lempers, H.E.B. (1998). Liquid phase oxidation at metal ions and complexes in constrained environments, Catal. Today, 41, 387-407.10.1016/S0920-5861(98)00027-3Search in Google Scholar

11. Davies, L.J., McMorn, P., Bethell, D., Bulman P.C., Page, F., King, F.E., Hancock, G. & Hutchings, J. (2000). By-product formation causes leaching of Ti from the redox molecular sieve TS-1. Chem. Commun., 1807-1808.10.1039/b002055iSearch in Google Scholar

12. Davies, L.J., McMorn, P., Bethell, D., Bulman P.C., Page, F., King, F.E., Hancock, G. & Hutchings, J. (2001). Oxidation of crotyl alcohol using Ti- and Ti-MCM-41 catalysts. J. Mol. Catal. A: Chem., 165, 243-247.10.1016/S1381-1169(00)00430-1Search in Google Scholar

13. Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., Scarano, D., Petrini, G., Leofanti, G. & Mantegazza, M. (1996). Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catal. Today, 32, 97-106.10.1016/S0920-5861(96)00075-2Search in Google Scholar

14. Davies, L.J, McMorn, P., Bethell, D., Bulman Page, P.C., Kings, F., Hancock, F.E. & Hutchings, G.J. (2001). Epoxidation of crotyl alcohol using Ti-containing heterogeneous catalysts: comments on the loss of Ti by leaching. J. Catal. 198, 319-327. DOI: 10.1006/jcat.2000.3139.10.1006/jcat.2000.3139Open DOISearch in Google Scholar

15. Wróblewska, A. (2008). The epoxidation of allylic compounds with hydrogen peroxide in the presence of titanium silicalite catalysts, Research studies of Technical University of Szczecin, 608, 1-116.Search in Google Scholar

16. Wróblewska, A. & Makuch, E. (2012). The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. React. Kinet. Mech. Catal., 105, 451-468. DOI: 10.1007/s11144-011-0405-1.10.1007/s11144-011-0405-1Open DOISearch in Google Scholar

17. Brill, W.F. & Barone, B.J. (1964). The liquid phase oxidation of the lower olefi ns. J. Org. Chem., 29 (1), 140-143.10.1021/jo01024a032Open DOISearch in Google Scholar

18. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). The establishing the products in the process of glycerol obtaining during the epoxidation of allyl alcohol. Zawod. Lab., 40, 1192-1194.Search in Google Scholar

19. Uphade, B.S., Yamada, Y., Akita, T., Nakamura, T. & Haruta, M. (2001). Synthesis and characterization of Ti- MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41, Appl. Catal. A: Gen., 215, 137-148.10.1016/S0926-860X(01)00527-0Search in Google Scholar

20. Uphade, B.S., Akita, T., Nakamura, T. & Haruta, M. (2002). Vapor-Phase Epoxidation of Propene Using H2 and O2 over Au/Ti-MCM-48, J. Catal., 209, 331-340. DOI: 10.1006/ jcat.2002.3642.10.1006/jcat.2002.3642Open DOISearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering