Accès libre

Investigations on the synthesis and properties of biodegradable poly(ester-carbonate-urea-urethane)s

À propos de cet article

Citez

1. Król, P. (2010). Linear Polyurethanes: Synthesis Methods,Chemical Structures, Properties and Applications. Brill E-Books, 2010, 25-44.10.1163/ej.9789004161245.i-258Search in Google Scholar

2. Ionescu, M. (2008) Chemistry and Technology of Polyols forPolyurethanes. UK. Shawbury: Rapra Technology Ltd. 55-167.Search in Google Scholar

3. Delcroix, D., Martin-Vaca, B., Bourissou, D. & Navarro, C. (2010). Ring-opening polymerization of trimethylene carbonate catalyzed by methanesulfonic acid: activated monomer versus active chain end mechanisms. Macromolecules 43 (21), 8828-8835. DOI: 10.1021/ma101461y.10.1021/ma101461yOpen DOISearch in Google Scholar

4. Bruin, P., Veenstra, G.J., Nijenhuis, A.J. & Pennings, A.J. (1988). Design and synthesis of biodegradable poly(esterurethane) elastomer networks composed of non-toxic building blocks. Makromol. Chem. Rapid. Commun. 9 (8), 589-594. DOI: 10.1002/marc.1988.030090814.10.1002/marc.1988.030090814Open DOISearch in Google Scholar

5. Fujimoto, K.L., Guan, J.J., Oshima, H., Sakai, T. & Wagner, W.R. (2007). In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann. Thorac. Surg. 83 (2), 648-654. DOI: 10.1016/j.athoracsur. 2006.06.085.10.1016/j.athoracsur.2006.06.085285533817258002Open DOISearch in Google Scholar

6. Skarja, G.A. & Woodhouse, K.A. (1998). Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J. Biomater. Sci. Polymer Edn. 9 (3) 271-295. DOI:10.1163/156856298X00659.10.1163/156856298X006599556762Open DOISearch in Google Scholar

7. Pawłowski, P., Szymański, A., Kozakiewicz, J., Przybylski, J. & Rokicki, G. (2005). Poly(urethane-urea)s based on oligocarbonatediols comprising bis(carbamate)alkanes. Polymer J. 37 (10), 742-753. DOI: 10.1295/polymj.37.742.10.1295/polymj.37.742Open DOISearch in Google Scholar

8. Pospiech, D., Komber, H., Jehnichen, D., Hussler, L., Eckstein, K., Scheibner, H., Janke, A., Kricheldorf, H.R. & Petermann, O. (2005). Multiblock copolymers of L-lactide and trimethylene carbonate. Biomacromolecules 6 (1), 439-446. DOI: 10.1021/bm049393a.10.1021/bm049393a15638550Open DOISearch in Google Scholar

9. Kricheldorf, H.R. & Rost, S. (2005). Biodegradable multiblock copolyesters prepared from -caprolactone, L-lactide, and trimethylene carbonate by means of bismuth hexanoate. Macromolecules 38 (20), 8220-8226. DOI: 10.1021/ma050439h.10.1021/ma050439hOpen DOISearch in Google Scholar

10. Yang, J., Liu, F., Yang, L. & Li, S. (2010). Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-D,Llactide) random copolymers with shape memory behavior. Eur. Polym. J. 46 (4), 783-791. DOI: 10.1016/j.eurpolymj.2009.12.017.10.1016/j.eurpolymj.2009.12.017Open DOISearch in Google Scholar

11. Yang, J., Tian, W., Li, Q., Li, Y. & Cao, A. (2004). Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate) s bearing functionalizable carbonate building blocks: II. Enzymatic biodegradation and in vitro biocompatibility assay.\ Biomacromolecules 5 (6), 2258-2268. DOI: 10.1021/bm049705+.10.1021/bm049705+15530040Open DOISearch in Google Scholar

12. Miura, M., Watanabe, H., Fujimori, T. & Isahaya, S. (1995). Jpn. Pat. JP07053695.Search in Google Scholar

13. Jiang, Z., Chen Liu, Ch. & Gross, R.A. (2008). Lipasecatalyzed synthesis of aliphatic poly(carbonate-co-esters). Macromolecules 41 (13), 4671-4680. DOI: 10.1021/ma702868a.10.1021/ma702868aOpen DOISearch in Google Scholar

14. Hong, Y., Guan, J., Fujimoto, K.L., Hashizume, R., Pelinescu, A.L. & Wagner, W.R. (2010). Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31 (15), 4249-4258. DOI: 10.1016/j.biomaterials.2010.02.00510.1016/j.biomaterials.2010.02.005Open DOISearch in Google Scholar

15. Sobczak, M., Dębek, C., Olędzka, E., Nałęcz-Jawecki, G., Kołodziejski, L.W. & Rajkiewicz, M. (2012). Segmented polyurethane elastomers derived from aliphatic polycarbonate and poly(ester-carbonate) soft segments for biomedical application. J. Polym. Sci. Part A 50 (18), 3904-3913. DOI: 10.1002/ pola.26190.10.1002/pola.26190Open DOISearch in Google Scholar

16. Wang, J., Zheng, L., Li, C., Zhu, W., Zhang, D., Guan, G. & Xiao, Y. (2012). Synthesis and properties of multiblock copolymers ccomprising of poly(butylene succinate) and poly(butylene carbonate) by chain extension. Ind. Eng. Chem. Res. 51 (33), 10785-10792. DOI: 10.1021/ie300547g.10.1021/ie300547gOpen DOISearch in Google Scholar

17. Tomczyk, K.M., Parzuchowski, P.G., Kozakiewicz, J., Przybylski, J. & Rokicki, G. (2010). Synthesis of oligocarbonate diols from a “green monomer” - dimethyl carbonate - as soft segments for poly(urethane-urea) elastomers. Polimery 55 (5), 366-372.10.14314/polimery.2010.366Search in Google Scholar

18. Fujimoto, K.L., Hashizume, R., Pelinescu, A.L. & Wagner, W.R. (2010). Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31 (15), 4249-4258, DOI: 10.1016/j.biomaterials.2010.02.005.10.1016/j.biomaterials.2010.02.005Open DOISearch in Google Scholar

19. Howard, G.T. (2002). Biodegradation of polyurethane: a review. Int. Biodeter. Biodegrad. 49 (4), 245-252. DOI: 10.1016/ S0964-8305(02)00051-3. 10.1016/S0964-8305(02)00051-3Open DOISearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering