Accès libre

Effects of Different Forms of Extrinsic Feedback on the Accuracy of Force Production and to Differentiate this Force in the Simple Cyclic Movements of the Upper and Lower Limb

À propos de cet article

Citez

1. Schmidt RA, Lee TD. Motor learning and performance. A situation-based learning approach. 5th edition. Champaign, Illinois: Human Kinetics; 2013; Search in Google Scholar

2. Magill RA. Augmented feedback in skill acquisition. In: Singer RN, Murphey M, Tennant LK. Eds. Handbook on Research in Sport Psychology. Macmillan: New York; 1993: 193-212; Search in Google Scholar

3. Latasch M. Fundamentals of motor control. 1st Edition. San Diego, USA: Academic Press, Elsevier; 2012; Search in Google Scholar

4. Lee T, Swinnen S, Serrien J. Cognitive effort and motor learning. Quest 1994; 46: 328-344;10.1080/00336297.1994.10484130 Search in Google Scholar

5. Young DE, Schmidt RA. Augmented kinematic feedback for motor learning. Journal of Motor Behavior 1992; 24(3): 261-273;10.1080/00222895.1992.994162112736131 Search in Google Scholar

6. More KG, Franks IM. Analysis and modification of verbal coaching behaviour: the usefulness of a data-driven intervention strategy. Journal of Sports Sciences 1996; 14: 523-543;10.1080/026404196087277398981291 Search in Google Scholar

7. Landin D. The role of verbal cues in skill learning. Quest 1996; 46: 299-313;10.1080/00336297.1994.10484128 Search in Google Scholar

8. Chiviacowsky S, Wulf G. Feedback after good trials enhances learning. Research Quarterly for Exercise and Sport 2007; 78: 40-47, DOI: 10.1080/02701367.2007.10599402; Search in Google Scholar

9. Sharma DA, Chevidikunnan MF, Khan FR, Gaowgzeh RA. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. Journal of Physical Therapy Science 2016; 28(5): 1482-1486 DOI: 10.1589/jpts.28.1482; Search in Google Scholar

10. Takeuchi T. Auditory information in playing tennis. Perceptual and Motor Skills 1993; 76: 1323-1328;10.2466/pms.1993.76.3c.13238337086 Search in Google Scholar

11. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review. Psychonomic Bulletin & Review 2013; 20: 21-53 DOI: 10.3758/s13423-012-0333-8; Search in Google Scholar

12. Proteau L. Visual afferent information dominates other sources of afferent information during mixed practice of a video-aiming task. Experimental Brain Research 2005; 161: 441-456;10.1007/s00221-004-2090-z15517215 Search in Google Scholar

13. Pérez P, Llana S, Brizuela G, Encarnación A. Effects of three feedback conditions on aerobic swim speeds. Journal of Sports Science and Medicine 2009; 8: 30-36; Search in Google Scholar

14. Kiemel T, Oie KS, Jeka JJ. Multisensory Fusion and the stochastic structure of postural sway. Biological Cybernetics 2002; 87: 262-277;10.1007/s00422-002-0333-212386742 Search in Google Scholar

15. Soto-Faraco S, Kingstone A, Spence C. Multisensory contributions to the perception of motion. Neuropsychologia 2003; 41: 1847-1862 DOI: 10.1016/S0028-3932(03)00185-4; Search in Google Scholar

16. Calvert GA, Spence C, Stein BE. Eds. The Handbook of multisensory processes. Cambridge, MA, USA: MIT Press; 2004; Search in Google Scholar

17. Enoka RM. Neuromechanics of Human Movement. 5th Edition. Urbana, IL: Human Kinetisc; 2002; Search in Google Scholar

18. Zatsiorsky VM. Kinematics of human motion. Champaign, Illinois: Human Kinetics; 1998; Search in Google Scholar

19. Rucci JA, Tomporowski PD. Three types of kinematic feedback and the execution of the hang power clean. Journal of Strength & Conditioning Research 2010; 24(3): 771-778 DOI: 10.1519/JSC.0b013e3181cbab96; Search in Google Scholar

20. Carp JS, Wolpaw JR. Motor neurons and spinal control of movement. eLS 2010, DOI: 10.1002/9780470015902.a0000156.pub2; Search in Google Scholar

21. Dounskaia N. Control of human limb movements: The leading joint hypothesis and its practical applications. Exercise and Sport Sciences Reviews 2010; 38(4), 201-208, DOI https://doi.org/10.1097/JES.0b013e3181f45194; Search in Google Scholar

22. Proske U. Gandevia CS. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews 2012; 92: 1651-1697;10.1152/physrev.00048.201123073629 Search in Google Scholar

23. Meinel K, Schnabel G. Bewegungslehre - Sportmotorik: Abriß einer Theorie der sportlichen Motorik unter pädagogischem Aspekt. Berlin: Sportverlag; 1998 German [Kinematics - motor skills: Schema of theory of motor skills at pedagogical aspect]; Search in Google Scholar

24. Zatoń M, Błacha R, Jastrzębska A, Słonina K. Repeatability of pressure force during elbow flexion and extension before and after exercise. Human Movement 2009; 10(2): 137-143;10.2478/v10038-009-0010-6 Search in Google Scholar

25. Błacha R. Powtarzalność napięć izometrycznych mięśni jako miara zdolności różnicowania kinestetycznego. Studia i Monografie AWF we Wrocławiu. Wrocław: AWF Wrocław; 2013: 112 Polish [Repeatability of isometric muscle tension as a way to measure kinesthetic differentiation ability]; Search in Google Scholar

26. Ernst MO, Banks MS. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002; 415(6870): 429-433;10.1038/415429a11807554 Search in Google Scholar

27. Pinzona D, Vegab R, Sanchez YP, Zheng B. Skill learning from kinesthetic feedback. American Journal of Surgery 2017; 214(4): 721-725;10.1016/j.amjsurg.2016.10.018 Search in Google Scholar

28. Rejman M, Klarowicz A, Zatoń K. An evaluation of kinesthetic differentiation ability in monofin swimmers. Human Movement 2012; 13(1): 8-15 DOI: 10.2478/v10038-011-0048-0; Search in Google Scholar

29. Docherty CL, Arnold BL. Force sense deficits in functionally unstable ankles. Journal of Orthopaedic Research 2008; 26(11): 1489-1493, DOI: 10.1002/jor.20682; Search in Google Scholar

30. Lee-Valkov PM, Aaron DH, Eladoumikdachi F, Thornby J, Netscher DT. Measuring normal hand dexterity values in normal 3-, 4-, and 5-year-old children and their relationship with grip and pinch strength. Journal of Hand Therapy 2003; 16(1): 22-28 DOI: 10.1016/s0894-1130(03)80020-0; Search in Google Scholar

31. Mustafa K, Furmanek MP, Knapik A, Bacik B, Juras G. The Impact of the Swedish Massage on the Kinesthetic Differentiation in Healthy Individuals. International Journal of Therapeutic Massage & Bodywork 2015; 8(1): 2-11;10.3822/ijtmb.v8i1.252 Search in Google Scholar

32. Klarowicz A, Zatoń K, Albiński P, Rejman M. Zmiany zdolności różnicowania kinestetycznego w trakcie realizacji programu pływania zdrowotnego u studentów AWF we Wrocławiu. Annales Universitatis Mariae Curie-Skłodowska Sect.D Med 2006b; 60, 16, 3, (291), 258-261 Polish [Changes in kinesthetic differentiation during program of fitness swimming for students]; Search in Google Scholar

33. Błacha R, Zatoń K, Piwowarczyk P, Jastrzębska A, Szczepan S. Repeatability of force production as a measure of kinesthetic sense in seagoing sailors and recreational sailors. Human Movement 2019; 20(2): 57-63, DOI:10.5114/hm.2019.83219; Search in Google Scholar

34. Szczepan S, Blacha R, Brożek T, Zaton K. Seasonal changes in force production accuracy as a measure of kinesthesia in motorcyclists. Human Movement 2020; 21(1): 15-21 DOI: https://doi.org/10.5114/hm.2020.88149; Search in Google Scholar

35. Zatoń K, Klarowicz A. Metoda oceny poziomu dokładności różnicowania kinestetycznego u dzieci w młodszym wieku szkolnym. In: Bartoszewicz R., Koszczyc T., Nowak A. Eds. Kontrola i ocena w wychowaniu fizycznym: dydaktyka wychowania fizycznego. Wrocławskie Towarzystwo Naukowe: Wrocław; 2003b: 347-352 Polish [Evaluation method of kinaesthetic differentiation precision in young school-age children]; Search in Google Scholar

36. Zatoń M, Zatoń K, Zygadło A. Zmiany zdolności różnicowania kinestetycznego w procesie uczenia się narciarstwa. Antropomotoryka 2008b; 18, 44, 37-47 Polish [Changes in kinaesthetic differentiation capacity in the ski learning process]; Search in Google Scholar

37. Klarowicz A, Zatoń K, Albiński P. Differences in conscious reception of stimuli from water environment in school children. In: Zatoń K, Jaszczak M. Eds. Science in Swimming II. AWF, Wrocław; 2008: 16-22; Search in Google Scholar

38. Hebisz R, Błacha R, Hebisz P, Szczepan S. The relationship between the gross efficiency and the ability to repeat the given pressure force in trained cyclists. Human Movement 2019; 20(1): 48-54, DOI: https://doi.org/10.5114/hm.2019.79217; Search in Google Scholar

39. Jastrzębska A., Zatoń M., Ochmann B. Physical performance and kinesthetic differentiation ability. Polish Journal of Environmental Studies 2006; 15, 2B, 1150-1153; Search in Google Scholar

40. Lundy-Ekman L. Neuroscience: Fundamentals for rehabilitation. 3rd edition. St Louis, Missouri: Saunders Elsevier; 2007, 110-112; Search in Google Scholar

41. Cho NMY, Giorgi HP, Liu KPY, Bae YH, Chung LMY, Kaewkaen K, Fong SSM. Proprioception and Flexibility Profiles of Elite Synchronized Swimmers. Perceptual and Motor Skills 2017; 124(6): 1151-1163 DOI: 10.1177/0031512517724965; Search in Google Scholar

42. Gandevia SC, McCloskey DI, Burke D. Kinaesthetic signals and muscle contraction. Trends in Neurosciences 1992; 15: 62-65;10.1016/0166-2236(92)90028-7 Search in Google Scholar

43. Reiman BL, Lephart SM. The sensorimotor system, part I: The physiologic basis of functional joint stability. Journal of Athletic Training 2002; 37: 71-79; Search in Google Scholar

44. Colyer R. Tactile sensitivity and swimming ability: exteroceptive perceptionof aquatic stimuli by three levels of college male swimmers. Unpublished doctoral dissertation, Bloomington, Indiana: Indiana University; 1975; Search in Google Scholar

45. Colwin CM. Breakthrough Swimming, Champaign, Illinois: Human Kinetics; 2002; Search in Google Scholar

46. Albiński P, Zatoń K, Klarowicz A. Changes in the level of kinesthetic differentiation in the training process among swimmers between 14 and 18 years of age. Polish Journal of Environmental Studies 2006; 15, (5B, 2): 646-650; Search in Google Scholar

47. Jastrzębska A, Ochmann B. Differences in level of kinaesthetic sense between swimmers and non-swimmers. In: Zatoń K, Jaszczak M. Eds. Science in Swimming II. AWF, Wrocław; 2008: 9-15; Search in Google Scholar

48. Lees A, Asai T, Andersen TB, Nunome H, Sterzing T. The biomechanics of kicking in soccer: a review. Journal of Sports Sciences 2010; 28(8): 805-17 DOI: 10.1080/02640414.2010.481305; Search in Google Scholar

49. Linthorne N, Heys M, Reynolds T, Eckardt N. Attaching mass to the upper arm can increase throw distance in a modified javelin throw. Acta of Bioengineering and Biomechanics 2020; 22(2): 55-67;10.37190/ABB-01558-2020-02 Search in Google Scholar

50. Bańkosz Z. The kinesthetic differentiation ability of table tennis players. Human Movement 2012; 13(1): 16-21 DOI:10.2478/v10038-011-0049-z; Search in Google Scholar

51. Sheehan WB, Bower RG, Watsford ML. Physical Determinants of Golf Swing Performance: A Review. The Journal of Strength & Conditioning Research 2019; 20. DOI: 10.1519/JSC.0000000000003411; Search in Google Scholar

52. Virmavirta M, Perttunen J, Komi PV. EMG activities and plantar pressures during ski jumping take-off on three different sized hills. Journal of Electromyography and Kinesiology 2001; 11: 141-147 DOI: 10.1016/s1050-6411(00)00047-x; Search in Google Scholar

53. Hébert-Losier K, Supej M, Holmberg HC. Biomechanical factors influencing the performance of elite Alpine ski racers. Sports Medicine 2014; 44(4): 519-33 DOI: 10.1007/s40279-013-0132-z; Search in Google Scholar

54. Minogue J, Jones MG. Haptics in education: exploring an untapped sensory modality. Review of Educational Research 2006; 76(3): 317-348 DOI: https://doi.org/10.3102/00346543076003317; Search in Google Scholar

55. Klarowicz A, Zatoń K, Albiński P. Differences in conscious reception of stimuli from water environment in school children participating in rehabilitation swimming program. Polish Journal of Environmental Studies 2006; 15, 5B, 2: 643-645; Search in Google Scholar

56. Ebert A, Deller M, Steffen D, Heintz M. “Where Did I Put That?” - Effectiveness of kinesthetic memory in immersive virtual environments. In: Stephanidis C. Eds. Universal Access in Human-Computer Interaction. Applications and Services. UAHCI 2009. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg; 2009; 5616: 179-188. DOI: https://doi.org/10.1007/978-3-642-02713-0_19; Search in Google Scholar

57. Zatoń K, Klarowicz A. Mowa jako czynnik uświadamiający wrażliwość kinestetyczną w procesie nauczania-uczenia się czynności ruchowych w pływaniu. Człowiek i Ruch 2003; 2(8): 45-53 Polish [Speech as a factor favouring kinaesthetic awareness in the process of learning swimming skills]; Search in Google Scholar

58. Klarowicz A, Groffik B, Rejman M. The modulation of verbal information as a factor stimulating conscious differentiation of kinaesthetic sensations in the aquatic environment. Baltic Journal of Health and Physical Activity 2011; 3, 4, 311-324 DOI: 10.2478/v10131-011-0031-3; Search in Google Scholar

59. Zatoń K, Szczepan S. The impact of immediate verbal feedback on the improvement of swimming technique. Journal of Human Kinetics 2014; 41: 129-137 DOI: 10.2478/hukin-2014-0042; Search in Google Scholar

60. Zatoń K, Cześniewicz I, Szczepan S. The effect of verbal feedback on biomechanical performance during swimming ergometry. Human Movement 2018; 19(1): 3-9 DOI: https://doi.org/10.5114/hm.2018.73606; Search in Google Scholar

61. Salkind NJ. Encyclopedia of Research Design. Thousand Oaks, California: Sage; 2010;10.4135/9781412961288 Search in Google Scholar

62. Zatoń M, Błacha R. Sposób pomiaru siły nacisku kończyn człowieka i urządzenie do pomiaru siły nacisku kończyn człowieka. Bulletin of the Patent Office; 2008, 4: 16, Polish [The method of measuring the pressure of human limbs and the device for measuring the pressure of human limbs]; Search in Google Scholar

63. Błacha R, Jastrzębska A. Accuracy of force repeatability in relation to its value and the subjects’ sex. Human Movement 2017; 18, 2, 30-37 DOI: 10.1515/humo-2017-0017; Search in Google Scholar

64. Jastrzębska A, Błacha R. Effect of Exhaustive Incremental Treadmill Effort on Force Generation Repeatability in Biathletes. Journal of Motor Behavior, 2014; 46, 4: 239-245 DOI: 10.1080/00222895.2014.893979; Search in Google Scholar

65. Seel NM. Eds. Retention Test. Encyclopedia of the Sciences of Learning. Boston, USA: Springer; 2012, DOI: 10.1007/978-1-4419-1428-6_2379; Search in Google Scholar

66. Schmidt RA, Lee TD, Winstein CJ, Wulf G, Zelaznik HN. Motor Control and Learning: A Behavioral Emphasis. 6th edition. Champaign, Illinois: Human Kinetics; 2018; Search in Google Scholar

67. Thoma JR, Nelson JK, Silverman SJ. Research methods in physical activity. 7th edition. Champaign, Illinois: Human Kinetics; 2015: 166-167; Search in Google Scholar

68. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 2007; 39(2): 175-191, DOI: https://doi.org/10.3758/BF03193146; Search in Google Scholar

69. Adams JA. A closed-loop theory of motor learning. Journal of Motor Behavior 1971; 3(2): 111-149, DOI: 10.1080/00222895.1971.10734898; Search in Google Scholar

70. Proteau L, Carnahan H. What causes specificity of practice in a manual aiming movement: vision dominance or transformation errors? Journal of Motor Behavior 2001; 33(3): 226-234;10.1080/0022289010960190811495827 Search in Google Scholar

71. Mackrous I, Proteau L. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics? Vision Research 2015; 110(Pt B): 223-232;10.1016/j.visres.2014.05.00724874948 Search in Google Scholar

72. Latash ML, Levin MF, Scholz JP, Schöner G. Motor control theories and their applications. Medicina (Kaunas) 2010; 46(6), 382-392;10.3390/medicina46060054 Search in Google Scholar

73. McIntyre AK, Proske U, Rawson JA. Cortical projection of afferent information from tendon organs in the cat. Journal of Physiology 1984; 354: 395-406;10.1113/jphysiol.1984.sp01538311934196237192 Search in Google Scholar

74. Keele SW, Posner MI. Processing of visual feedback in rapid movements. Journal of Experimental Psychology 1968; 77(1): 155-158, https://doi.org/10.1037/h0025754; Search in Google Scholar

75. Ehrlenspiel F, Wei K, Sternad D. Open-loop, closed-loop and compensatory control: performance improvement under pressure in a rhythmic task. Experimental Brain Research 2010; 201(4): 729-741, DOI:10.1007/s00221-009-2087-8; Search in Google Scholar

76. Schmidt RA, Wulf G. Continuous concurrent feedback degrades skill learning: implications for training and simulation. Human Factors 1997; 39(4), 509-525;10.1518/0018720977786679799473972 Search in Google Scholar

77. Gritsenko V, Krouchev NI, Kalaska JF. Afferent input, efference copy, signal noise, and biases in perception of joint angle during active versus passive elbow movements. Journal of Neurophysiology 2007; 98: 1140-1154.10.1152/jn.00162.200717615137 Search in Google Scholar