This work is licensed under the Creative Commons Attribution 4.0 International License.
Al-Naseem, O. A. and El-Sayed, M. A. (2013). Analysis of electrical and non-electrical causes of variable frequency drive failures. In 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED) (pp. 221–226). IEEE.Al-NaseemO. A.El-SayedM. A.2013Analysis of electrical and non-electrical causes of variable frequency drive failuresIn2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED)221226IEEESearch in Google Scholar
Avor, J. K. and Chang, C.-K. (2019). Reliability Analysis of Application of Variable Frequency Drive on Condensate Pump in Nuclear Power Plant. Journal of International Council on Electrical Engineering, 9(1), pp. 8–14. doi: 10.1080/22348972.2018.1564548AvorJ. K.ChangC.-K.2019Reliability Analysis of Application of Variable Frequency Drive on Condensate Pump in Nuclear Power PlantJournal of International Council on Electrical Engineering9181410.1080/22348972.2018.1564548Open DOISearch in Google Scholar
Bear, J., Prügel-Bennett, A. and Hare, J. (2024). Rethinking Deep Thinking: Stable Learning of Algorithms using Lipschitz Constraints. Proeedings of 38th Conference on Neural Information Processing Systems (NeurIPS 2024), arXiv:2410.23451. https://doi.org/10.48550/arXiv.2410.23451BearJ.Prügel-BennettA.HareJ.2024Rethinking Deep Thinking: Stable Learning of Algorithms using Lipschitz ConstraintsProeedings of 38th Conference on Neural Information Processing Systems (NeurIPS 2024)arXiv:2410.23451. https://doi.org/10.48550/arXiv.2410.23451Search in Google Scholar
Beattie, A., Mulink, P., Sahoo, S., Christou, I. T., Kalalas, C., Gutierrez-Rojas, D., and Nardelli, P. H. (2022). A Robust and Explainable Data-Driven Anomaly Detection Approach for Power Electronics. In 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 296–301). IEEE.BeattieA.MulinkP.SahooS.ChristouI. T.KalalasC.Gutierrez-RojasD.NardelliP. H.2022A Robust and Explainable Data-Driven Anomaly Detection Approach for Power ElectronicsIn2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)296301IEEESearch in Google Scholar
Bokeh Development Team (BDT) (2018). Bokeh: Python library for interactive visualization. http://www.bokeh.pydata.org.Bokeh Development Team (BDT)2018Bokeh: Python library for interactive visualizationhttp://www.bokeh.pydata.org.Search in Google Scholar
Chandola, V., Banerjee, A. and Kumar, V. (2009). Anomaly Detection: A Survey. ACM Computing Surveys (CSUR), 41(3), pp. 1–58. doi: 10.1145/1541880.1541882ChandolaV.BanerjeeA.KumarV.2009Anomaly Detection: A SurveyACM Computing Surveys (CSUR)41315810.1145/1541880.1541882Open DOISearch in Google Scholar
Chen, Y., Gao, Q. and Wang, X. (2022). Inferential Wasserstein Generative Adversarial Networks. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(1), pp. 83–113. doi: 10.1111/rssb.12476ChenY.GaoQ.WangX.2022Inferential Wasserstein Generative Adversarial NetworksJournal of the Royal Statistical Society Series B: Statistical Methodology8418311310.1111/rssb.12476Open DOISearch in Google Scholar
Chollet, F. (2018). Deep Learning with Python. New York, Manning Publications.CholletF.2018Deep Learning with PythonNew YorkManning PublicationsSearch in Google Scholar
Ciappa, M. and Fichtner, W. (2000). Lifetime Prediction of IGBT Modules for Traction Applications. IEEE International Reliability Physics Symposium Proceedings, San Jose, CA, USA.CiappaM.FichtnerW.2000Lifetime Prediction of IGBT Modules for Traction ApplicationsIEEE International Reliability Physics Symposium ProceedingsSan Jose, CA, USASearch in Google Scholar
Dai, H., Wang, J., Zhong, Q., Chen, T., Liu, H., Zhang, X. and Lu, R. (2024). A GAN-Based Anomaly Detector Using Multi-Feature Fusion and Selection. Scientific Reports, 14, p. 52378. https://doi.org/10.1038/s41598-024-52378-9DaiH.WangJ.ZhongQ.ChenT.LiuH.ZhangX.LuR.2024A GAN-Based Anomaly Detector Using Multi-Feature Fusion and SelectionScientific Reports1452378https://doi.org/10.1038/s41598-024-52378-9Search in Google Scholar
Flach, P. and Kull, M. (2015). Precision-recall-gain curves: PR analysis done right. In: Proceedings of Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, Quebec, Canada.FlachP.KullM.2015Precision-recall-gain curves: PR analysis done rightIn:Proceedings of Advances in Neural Information Processing Systems 28 (NIPS 2015)Montreal, Quebec, CanadaSearch in Google Scholar
Gómez, P. I., López, G. M. E., Mijatovic, N. and Dragičević, T. (2024). A Self-Commissioning Edge Computing Method for Data-Driven Anomaly Detection in Power Electronic Systems. IEEE Transactions on Industrial Electronics, vol. 71, no. 10, pp. 13319–13330. doi: 10.1109/TIE.2023.3347839GómezP. I.LópezG. M. E.MijatovicN.DragičevićT.2024A Self-Commissioning Edge Computing Method for Data-Driven Anomaly Detection in Power Electronic SystemsIEEE Transactions on Industrial Electronics7110133191333010.1109/TIE.2023.3347839Open DOISearch in Google Scholar
Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. Cambridge, US, MIT Press.GoodfellowI.BengioY.CourvilleA.2016Deep LearningCambridge, USMIT PressSearch in Google Scholar
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A. (2017). Improved Training of Wasserstein GANs. arXiv, arXiv:1704.00028, doi: 10.48550/arXiv.1704.00028GulrajaniI.AhmedF.ArjovskyM.DumoulinV.CourvilleA.2017Improved Training of WassersteinGANsarXiv, arXiv:1704.00028,10.48550/arXiv.1704.00028Open DOISearch in Google Scholar
Harris, C., Millman, K., van der Walt, S., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and Oliphant, T. E. (2020). Array Programming with NumPy. Nature, 585, pp. 357–362. doi: 10.1038/s41586-020-2649-2HarrisC.MillmanK.van der WaltS.GommersR.VirtanenP.CournapeauD.WieserE.TaylorJ.BergS.SmithN. J.KernR.PicusM.HoyerS.van KerkwijkM. H.BrettM.HaldaneA.Del RíoJ. F.WiebeM.PetersonP.Gérard-MarchantP.SheppardK.ReddyT.WeckesserW.AbbasiH.GohlkeC.OliphantT. E.2020Array Programming with NumPyNature58535736210.1038/s41586-020-2649-2Open DOISearch in Google Scholar
Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3), pp. 90–95. doi: 10.1109/MCSE.2007.55HunterJ. D.2007Matplotlib: A 2D Graphics EnvironmentComputing in Science & Engineering93909510.1109/MCSE.2007.55Open DOISearch in Google Scholar
Kang, Y., Dang, L., Yang, L., Wang, Z., Meng, Y., Li, S., Sun, Y., Wang, Y., and Dong, H. (2023). Research Progress in Failure Mechanism and Health State Evaluation Index System of Welded IGBT Power Modules. Electronics, 12(15), p. 3248. doi: 10.3390/electronics12153248KangY.DangL.YangL.WangZ.MengY.LiS.SunY.WangY.DongH.2023Research Progress in Failure Mechanism and Health State Evaluation Index System of Welded IGBT Power ModulesElectronics1215324810.3390/electronics12153248Open DOISearch in Google Scholar
Kennedy, D. (2021). Common Causes of VFD Failure [online]. Available at: https://goemc.com/2021/05/20/common-causes-of-vfd-failure/ [Accessed 12 Feb, 2025].KennedyD.2021Common Causes of VFD Failure[online]. Available at: https://goemc.com/2021/05/20/common-causes-of-vfd-failure/ [Accessed 12 Feb, 2025].Search in Google Scholar
Kumar, R., Carroll, C., Hartikainen, A. and Martin, O. (2019). ArviZ a Unified Library for Exploratory Analysis of Bayesian Models in Python. Journal of Open Source Software, 4(33), p. 1143. doi: 10.21105/joss.01143KumarR.CarrollC.HartikainenA.MartinO.2019ArviZ a Unified Library for Exploratory Analysis of Bayesian Models in PythonJournal of Open Source Software433114310.21105/joss.01143Open DOISearch in Google Scholar
León-López, K. M., Mouret, F., Arguello, H. and Tourneret, J.-Y. (2021). Anomaly Detection and Classification in Multispectral Time Series Based on Hidden Markov Models. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5402311. doi: 10.1109/TGRS.2021.3101127León-LópezK. M.MouretF.ArguelloH.TourneretJ.-Y.2021Anomaly Detection and Classification in Multispectral Time Series Based on Hidden Markov ModelsIEEE Transactions on Geoscience and Remote Sensing60540231110.1109/TGRS.2021.3101127Open DOISearch in Google Scholar
Lüer, F. and Böhm, C. (2021). Anomaly Detection using Generative Adversarial Networks: A Review. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore.LüerF.BöhmC.2021Anomaly Detection using Generative Adversarial Networks: A ReviewIn:Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data MiningSingaporeSearch in Google Scholar
Manaserh, Y. M., Tradat, M. I., Hoang, C. H., Sammakia, B., Ortega, A., Nemati, K., Seymour, M. J. (2021). Degradation of Fan Performance in Cooling Electronics: Experimental Investigation and Evaluating Numerical Techniques. International Journal of Heat and Mass Transfer, 174, p. 121291. doi: 10.1016/j.ijheatmasstransfer.2021.121291ManaserhY. M.TradatM. I.HoangC. H.SammakiaB.OrtegaA.NematiK.SeymourM. J.2021Degradation of Fan Performance in Cooling Electronics: Experimental Investigation and Evaluating Numerical TechniquesInternational Journal of Heat and Mass Transfer17412129110.1016/j.ijheatmasstransfer.2021.121291Open DOISearch in Google Scholar
Otsuki, M., Onozawa, Y., Kanemaru, H., Seki, Y., Matsumoto, T. (2003). A Study on the Short-Circuit Capability of Field-Stop IGBTs. IEEE Transactions on Electron Devices, 50, pp. 1525–1531. doi: 10.1109/TED.2003.813505OtsukiM.OnozawaY.KanemaruH.SekiY.MatsumotoT.2003A Study on the Short-Circuit Capability of Field-Stop IGBTsIEEE Transactions on Electron Devices501525153110.1109/TED.2003.813505Open DOISearch in Google Scholar
Peterson, D. (2022). Teardown: What’s Inside a Variable Frequency Drive (VFD)? Control Automation, technical article, website: https://control.com/technical-articles/teardown-whats-inside-a-vfd/, accessed on 05-05-2025PetersonD.2022Teardown: What’s Inside a Variable Frequency Drive (VFD)?Control Automation, technical articlewebsite: https://control.com/technical-articles/teardown-whats-inside-a-vfd/, accessed on 05-05-2025Search in Google Scholar
Qi, S., Chen, J., Chen, P., Wen, P., Shan, W. and Xiong, L. (2023). An Effective WGAN-Based Anomaly Detection Model for IoT Multivariate Time Series. Kyoto, Japan: Pacific-Asia Conference on Knowledge Discovery and Data Mining.QiS.ChenJ.ChenP.WenP.ShanW.XiongL.2023An Effective WGAN-Based Anomaly Detection Model for IoT Multivariate Time SeriesKyoto, JapanPacific-Asia Conference on Knowledge Discovery and Data MiningSearch in Google Scholar
Surówka, A., Tan, R., Saberi, A., and Firla, M. (2023). Performance of machine-learning-based algorithms for anomaly detection in variable frequency drives using temperature signals. In: 2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Chania, Greece, 28–31 August 2023.SurówkaA.TanR.SaberiA.FirlaM.2023Performance of machine-learning-based algorithms for anomaly detection in variable frequency drives using temperature signalsIn:2023 IEEE 14th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)Chania, Greece28–31 August 2023Search in Google Scholar
Surówka, A., Mikkelä, T., Kavala, A., and Firla, M. (2024a). Dual-mode hidden Markov models for smart detection of clogging in variable frequency drives. In: IEEE 21st International Power Electronics and Motion Control Conference, Pilsen, Czech Republic, 2024.SurówkaA.MikkeläT.KavalaA.FirlaM.2024aDual-mode hidden Markov models for smart detection of clogging in variable frequency drivesIn:IEEE 21st International Power Electronics and Motion Control ConferencePilsen, Czech Republic2024Search in Google Scholar
Surówka, A., Tan, R., Saberi, A. and Firla, M. (2024b). Out of Bounds Anomaly Scores in Anomaly Detection in Variable Frequency Drives Using Temperature Signals. IEEE Transactions on Industry Applications, 60(5), pp. 6988–7000. doi: 10.1109/TIA.2024.3427712SurówkaA.TanR.SaberiA.FirlaM.2024bOut of Bounds Anomaly Scores in Anomaly Detection in Variable Frequency Drives Using Temperature SignalsIEEE Transactions on Industry Applications6056988700010.1109/TIA.2024.3427712Open DOISearch in Google Scholar
Tang, S., Shi, H., Song, B., Tao, Y., and Tan, S. (2025). Physically-Consistent-WGAN Based Small Sample Fault Diagnosis for Industrial Processes. Chinese Journal of Chemical Engineering, 78, pp. 163–174. doi: 10.1016/j.cjche.2024.10.028TangS.ShiH.SongB.TaoY.TanS.2025Physically-Consistent-WGAN Based Small Sample Fault Diagnosis for Industrial ProcessesChinese Journal of Chemical Engineering7816317410.1016/j.cjche.2024.10.028Open DOISearch in Google Scholar
Tuli, S., Casale, G. and Jennings, N. (2022). TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series Data. arXiv preprint, p. 2201.07284. doi: 10.48550/arXiv.2201.07284TuliS.CasaleG.JenningsN.2022TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate Time Series DataarXiv preprint2201.0728410.48550/arXiv.2201.07284Open DOISearch in Google Scholar
Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., and Ding, N. (2023). GAN-Based Anomaly Detection: A Review. Neurocomputing, 493, pp. 497–535. doi: 10.1016/j.neucom.2021.12.093XiaX.PanX.LiN.HeX.MaL.ZhangX.DingN.2023GAN-Based Anomaly Detection: A ReviewNeurocomputing49349753510.1016/j.neucom.2021.12.093Open DOISearch in Google Scholar
Xu, L., Xu, K., Qin, Y., Li, Y., Huang, X., Lin, Z., and Ji, X. (2022). TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series Data. Applied Sciences, 12(16), 8085. doi: 10.3390/app12168085XuL.XuK.QinY.LiY.HuangX.LinZ.JiX.2022TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series DataApplied Sciences1216808510.3390/app12168085Open DOISearch in Google Scholar
Yellamati, D., Arthu, E., James, S., Morris, G., Heydt, T., and Graf, E. (2013). Predictive Reliability Models for Variable Frequency Drives Based on Application Profiles. Orlando, FL: USA.YellamatiD.ArthuE.JamesS.MorrisG.HeydtT.GrafE.2013Predictive Reliability Models for Variable Frequency Drives Based on Application ProfilesOrlando, FL: USASearch in Google Scholar
Yinka-Banjo, C., and Ugot, OA. (2020). A review of generative adversarial networks and its application in cybersecurity. Artif Intell Rev 53, 1721–1736. doi: 10.1007/s10462-019-09717-4Yinka-BanjoC.UgotOA.2020A review of generative adversarial networks and its application in cybersecurityArtif Intell Rev531721173610.1007/s10462-019-09717-4Open DOISearch in Google Scholar
Zhang, C. and Yang, T. (2023). Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training. Energies, 16(19), p. 7008. doi: 10.3390/en16197008ZhangC.YangT.2023Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised TrainingEnergies1619700810.3390/en16197008Open DOISearch in Google Scholar
Zhang, M., Gómez, P. I., Xu, Q. and Dragicevic, T. (2023). Review of Online Learning for Control and Diagnostics of Power Converters and Drives: Algorithms, Implementations and Applications. Renewable and Sustainable Energy Reviews, 186, p. 113627. doi: 10.1016/j.rser.2023.113627ZhangM.GómezP. I.XuQ.DragicevicT.2023Review of Online Learning for Control and Diagnostics of Power Converters and Drives: Algorithms, Implementations and ApplicationsRenewable and Sustainable Energy Reviews18611362710.1016/j.rser.2023.113627Open DOISearch in Google Scholar
Zmrhal, V. and Boháč, J. (2021). Pressure Loss of Flexible Ventilation Ducts for Residential Ventilation: Absolute Roughness and Compression Effect. Journal of Building Engineering, 44, p. 103320. doi: 10.1016/j.jobe.2021.103320ZmrhalV.BoháčJ.2021Pressure Loss of Flexible Ventilation Ducts for Residential Ventilation: Absolute Roughness and Compression EffectJournal of Building Engineering4410332010.1016/j.jobe.2021.103320Open DOISearch in Google Scholar