An Improved SOGI-Higher-Order Sliding Mode Observer-Based Induction Motor Speed Estimation
Catégorie d'article: Research paper
Publié en ligne: 21 déc. 2024
Pages: 19 - 40
Reçu: 08 sept. 2024
Accepté: 22 nov. 2024
DOI: https://doi.org/10.2478/pead-2025-0002
Mots clés
© 2025 Kobena Badu Enyam et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
This article presents a novel adaptive gain tuning second-order generalised integrator (SOGI)-higher-order sliding mode (HOSM) observer for robust speed estimation for an induction motor’s entire speed range. This article introduces a hyperbolic tangent function and a varying gain exponent that ensures accurate speed estimation under noisy conditions and significantly reduces chattering observed in conventional sliding mode observers (SMOs). The robustness of the proposed speed estimation method is verified through simulations conducted on MATLAB/Simulink R2024a developed by MathWorks, demonstrating its capability to effectively track the motor’s actual speed even under varying load torque conditions, parameter variations and additional sensor noise. The proposed approach’s superiority and robustness were compared with the conventional SOGI-frequency locked loop (FLL) and super twisting algorithm (STA) SMO.