Accès libre

Three-level Vienna Rectifier with a Brushless and Permanent Magnetless Generator for Wind Energy Conversion Systems

À propos de cet article

Citez

Bhattacherjee, H., Mukherjee, D., Vuyyuru, U. and Chakraborty, C. (2021). Brushless Synchronous Generator-Unidirectional Rectifier for Offshore Wind Energy Conversion System. IEEE Transactions on Energy Conversion. Available at: https://ieeexplore.ieee.org/document/9629266 Search in Google Scholar

Bhattacherjee, H., Rao, Y. T. and Chakraborty, C. (2020). Brushless and Magnetless Synchronous Generator for Standalone DC Load with Vienna Rectifier. IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, pp. 83–88.10.1109/ISIE45063.2020.9152485 Search in Google Scholar

Bose, B. K. (2002). Modern Power Electronics and AC Drives. New Jersey, United States: Prentice Hall PTR. Search in Google Scholar

Chakraborty, C. and Rao, Y. T. (2019). Performance of Brushless Induction Excited Synchronous Generator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(4), pp. 2571–2582.10.1109/JESTPE.2018.2881068 Search in Google Scholar

Flores-Bahamonde, F., Valderrama-Blavi, H., Martínez-Salamero, L., Maixé-Altés, J. and García, G. (2014). Control of a Three-Phase AC/DC VIENNA Converter Based on the Sliding Mode Loss-free Resistor Approach. IET Power Electronics, 7(5), pp. 1073–1082.10.1049/iet-pel.2013.0405 Search in Google Scholar

Gajewski, P., and Pieńkowski, K. (2016). The Performance of Direct-Driven Variable Speed Wind Turbine With Pmsg And Converter Systems. Power Electronics and Drives, 1, pp. 79–89. Search in Google Scholar

Gil, M. D. P., Domínguez-García, J. L., Díaz-González, F., Aragüés-Peñalba, M., Gomis-Bellmunt, O. (2015). Feasibility Analysis of Offshore Wind Power Plants With DC Collection Grid. Renewable Energy, 78, pp. 467–477.10.1016/j.renene.2015.01.042 Search in Google Scholar

Global Wind Report 2021. (2021). GWEC. Available at: https://gwec.net/global-wind-report-2021/ Accessed: December 2021. Search in Google Scholar

Heier, S. (2014). Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 3rd ed. New York: Wiley.10.1002/9781118703274 Search in Google Scholar

Iwański, G., and Łuszczyk, T. (2017). Control of Doubly Fed Induction Generator at Grid Voltage Imbalance. Power Electronics and Drives, 2, pp. 31–48. Search in Google Scholar

Kumari, S., Kushwaha, V. and Gupta, T. N. (2018). A Maximum Power Point Tracking for a PMSG Based Variable Speed Wind Energy Conversion System. 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 2018, pp. 789–794.10.1109/PEEIC.2018.8665484 Search in Google Scholar

Lee, J. and Lee, K. (2015). Open-Switch Fault Tolerance Control for a Three-Level NPC/T-Type Rectifier in Wind Turbine Systems. IEEE Transactions on Industrial Electronics, 62(2), pp. 1012–1021.10.1109/TIE.2014.2347912 Search in Google Scholar

Lee, J. and Lee, K. (2017). Predictive Control of Vienna Rectifiers for PMSG Systems. IEEE Transactions on Industrial Electronics, 64(4), pp. 2580–2591.10.1109/TIE.2016.2644599 Search in Google Scholar

Liu, Y., Pehrman, D., Lykartsis, O., Tang, J. and Liu, T. (2016). High Frequency Exciter of Electrically Excited Synchronous Motors for Vehicle Applications. 2016 XXII International Conference on Electrical Machines (ICEM), pp. 378–383.10.1109/ICELMACH.2016.7732554 Search in Google Scholar

Luqman, M., Yao, G., Zhou, L. and Lamichhane, A. (2019). Analysis of Variable Speed Wind Energy Conversion System with PMSG and Vienna Rectifier. IEEE 14th Conference on Industrial Electronics and Applications (ICIEA), pp. 1296–1301.10.1109/ICIEA.2019.8833819 Search in Google Scholar

Maswood, A. I., Al-Ammar, E. and Liu, F. (2011). Average and Hysteresis Current-Controlled Three-Phase Three-Level Unity Power Factor Rectifier Operation and Performance. IET Power Electronics, 4(7), pp. 752–758.10.1049/iet-pel.2010.0189 Search in Google Scholar

Minibock, J. and Kolar, J. W. (2005). Novel Concept for Mains Voltage Proportional Input Current Shaping of a VIENNA Rectifier Eliminating Controller Multipliers. In: IEEE Transactions on Industrial Electronics, 52(1), pp. 162–170.10.1109/TIE.2004.841096 Search in Google Scholar

Moallem, M., Mirzaeian, B., Mohammed, O. A., and Lucas, C. (2001). Multi-Objective Genetic-Fuzzy Optimal Design of PI Controller in the Indirect Field Oriented Control of an Induction Motor. IEEE Transactions on Magnetics, 37(5), pp. 3608–3612s.10.1109/20.952673 Search in Google Scholar

Mukherjee, D. and Kastha, D. (2015). Voltage Sensorless Control of the Three-Level Three-Switch Vienna Rectifier with Programmable Input Power Factor. IET Power Electronics, 8(8), pp. 1349–1357.10.1049/iet-pel.2014.0365 Search in Google Scholar

Patin, N., Vido, L., Monmasson, E., Louis, J., Gabsi, M. and Lecrivain, M. (2008). Control of a Hybrid Excitation Synchronous Generator for Aircraft Applications. IEEE Transactions on Industrial Electronics, 55(10), pp. 3772–3783.10.1109/TIE.2008.924030 Search in Google Scholar

Pavel, C. C., Lacal-Arántegui, R., Marmier, A., Schüler, D., Tzimas, E., Buchert, M., Jenseit, W. and Blagoeva, D. (2017). Substitution Strategies for Reducing the Use of Rare Earths in Wind Turbines. Resources Policy, 52, pp. 349–357.10.1016/j.resourpol.2017.04.010 Search in Google Scholar

Prajapat, G. P., Senroy, N. and Kar, I. N. (2021). Estimation Based Enhanced Maximum Energy Extraction Scheme for DFIG-Wind Turbine Systems. Sustainable Energy, Grids and Networks, 26, p. 100419.10.1016/j.segan.2020.100419 Search in Google Scholar

Rahimi, M. (2017). Modeling, Control and Stability Analysis of Grid Connected PMSG Based Wind Turbine Assisted with Diode Rectifier and Boost Converter. International Journal of Electrical Power & Energy Systems, 93, pp. 84–96.10.1016/j.ijepes.2017.05.019 Search in Google Scholar

Rajaei, A. H., Mohamadian, M., Dehghan, S. M. and Yazdian, A. (2011). PMSG-based Variable Speed Wind Energy Conversion System Using Vienna Rectifier. European Transactions on Electrical Power, 21, pp. 954–972.10.1002/etep.488 Search in Google Scholar

Rao, Y. T., Chakraborty, C. and Sengupta, S. (2021). Performance and Stability of Brushless Induction Excited Synchronous Generator Operating in Self-Excited Mode for Wind Energy Conversion System. IEEE Transactions on Energy Conversion, 36(2), pp. 919–929.10.1109/TEC.2020.3023960 Search in Google Scholar

Reddy, D. and Ramasamy, S. (2018). Design of RBFN Controller Based Boost Type Vienna Rectifier for Grid-Tied Wind Energy Conversion System. IEEE Access, 6, pp. 3167–3175.10.1109/ACCESS.2017.2787567 Search in Google Scholar

Sabrina, U., Schullerus, G. and Soenmez, E. (2021). Active Damping in Series Connected Power Modules with Continuous Output Voltage. Power Electronics and Drives, 6(41), pp. 314–335. Search in Google Scholar

Shipurkar, U., Strous, T. D., Polinder, H., Ferreira, J. A. and Veltman, A. (2017). Achieving Sensorless Control for the Brushless Doubly Fed Induction Machine. IEEE Transactions on Energy Conversion, 32(4), pp. 1611–1619.10.1109/TEC.2017.2724204 Search in Google Scholar

Szulawski, P. and Koczara, W. (2016). Synchrogenverter - Parallel Connection of Synchronous Generator and Power Converter with Energy Storage. Power Electronics and Drives, 1, pp. 69–78. Search in Google Scholar

Xu, J. and Xie, S. (2018). LCL-Resonance Damping Strategies for Grid-Connected Inverters with LCL Filters: A Comprehensive Review. Journal of Modern Power Systems and Clean Energy, 6, pp. 292–305.10.1007/s40565-017-0319-7 Search in Google Scholar

Yang, G. and Zhu, Y. (2010). Application of a Matrix Converter for PMSG Wind Turbine Generation System. The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, pp. 185–189.10.1109/PEDG.2010.5545933 Search in Google Scholar

Yaramasu, V., Wu, B., Sen, P. C., Kouro, S., and Narimani, M. (2015). High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies. Proceedings of the IEEE, 103(5), pp. 740–788.10.1109/JPROC.2014.2378692 Search in Google Scholar

eISSN:
2543-4292
Langue:
Anglais