À propos de cet article

Citez

Alshibani, A. (2018). Automation of measuring actual productivity of earthwork in urban area, a case study from Montreal. Buildings, 8(12), 178. AlshibaniA. 2018 Automation of measuring actual productivity of earthwork in urban area, a case study from Montreal Buildings 8 12 178 10.3390/buildings8120178 Search in Google Scholar

Alshibani, A., & Moselhi, O. (2016). Productivity based method for forecasting cost & time of earthmoving operations using sampling GPS data. Journal of Information Technology in Construction (ITcon), 21(3), pp. 39–56. AlshibaniA. MoselhiO. 2016 Productivity based method for forecasting cost & time of earthmoving operations using sampling GPS data Journal of Information Technology in Construction (ITcon) 21 3 39 56 Search in Google Scholar

Bügler, M., Borrmann, A., Ogunmakin, G., Vela, P. A., & Teizer, J. (2017). Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes. Computer-Aided Civil and Infrastructure Engineering, 32(2), pp. 107–123. BüglerM. BorrmannA. OgunmakinG. VelaP. A. TeizerJ. 2017 Fusion of photogrammetry and video analysis for productivity assessment of earthwork processes Computer-Aided Civil and Infrastructure Engineering 32 2 107 123 10.1111/mice.12235 Search in Google Scholar

Chen, C., Zhu, Z., & Hammad, A. (2020). Automated excavators activity recognition and productivity analysis from construction site surveillance videos. Automation in Construction, 110, p. 10304. ChenC. ZhuZ. HammadA. 2020 Automated excavators activity recognition and productivity analysis from construction site surveillance videos Automation in Construction 110 10304 10.1016/j.autcon.2019.103045 Search in Google Scholar

Chi, S., & Caldas, C. H. (2011). Automated object identification using optical video cameras on construction sites. Computer-Aided Civil and Infrastructure Engineering, 26(5), pp. 368–380. ChiS. CaldasC. H. 2011 Automated object identification using optical video cameras on construction sites Computer-Aided Civil and Infrastructure Engineering 26 5 368 380 10.1111/j.1467-8667.2010.00690.x Search in Google Scholar

Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). “Introduction and Motivation” in pre-publication version Mathematics for Machine Learning, Cambridge University Press, pp. 11–16. DeisenrothM. P. FaisalA. A. OngC. S. 2020 “Introduction and Motivation” in pre-publication version Mathematics for Machine Learning Cambridge University Press 11 16 10.1017/9781108679930.003 Search in Google Scholar

Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3–4), pp. 197–387. DengL. YuD. 2014 Deep learning: Methods and applications Foundations and Trends® in Signal Processing 7 3–4 197 387 10.1561/9781601988157 Search in Google Scholar

Géron, A. (2017). Multi-Layer Perceptron and Backpropagation. In: Adams, N. (ed.), Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly Media, USA, pp. 326–330. GéronA. 2017 Multi-Layer Perceptron and Backpropagation In: AdamsN. (ed.), Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems O’Reilly Media USA 326 330 Search in Google Scholar

Ghorbani, M., Bahaghighat, M., Xin, Q., & Özen, F. (2020). ConvLSTMConv network: A deep learning approach for sentiment analysis in cloud computing. Journal of Cloud Computing, 9(1), pp. 1–12. GhorbaniM. BahaghighatM. XinQ. ÖzenF. 2020 ConvLSTMConv network: A deep learning approach for sentiment analysis in cloud computing Journal of Cloud Computing 9 1 1 12 10.1186/s13677-020-00162-1 Search in Google Scholar

Golparvar-Fard, M., Heydarian, A., & Niebles, J. C. (2013). Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers. Advanced Engineering Informatics, 27(4), pp. 652–663. Golparvar-FardM. HeydarianA. NieblesJ. C. 2013 Vision-based action recognition of earthmoving equipment using spatio-temporal features and support vector machine classifiers Advanced Engineering Informatics 27 4 652 663 10.1016/j.aei.2013.09.001 Search in Google Scholar

Gong, J., & Caldas, C. H. (2011). An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations. Automation in Construction, 20(8), pp. 1211–1226. GongJ. CaldasC. H. 2011 An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations Automation in Construction 20 8 1211 1226 10.1016/j.autcon.2011.05.005 Search in Google Scholar

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Introduction. In: Dietterich, T. (ed.), Deep Learning, The MIT Press, Cambridge, Massachusetts, London, England, pp. 1–28. GoodfellowI. BengioY. CourvilleA. 2016 Introduction In: DietterichT. (ed.), Deep Learning The MIT Press Cambridge, Massachusetts, London, England 1 28 Search in Google Scholar

Hola, B., & Schabowicz, K. (2010). Estimation of earthworks execution time cost by means of artificial neural networks. Automation in Construction, 19(5), pp. 570–579. HolaB. SchabowiczK. 2010 Estimation of earthworks execution time cost by means of artificial neural networks Automation in Construction 19 5 570 579 10.1016/j.autcon.2010.02.004 Search in Google Scholar

Ibrahim, M., & Moselhi, O. (2014). Automated productivity assessment of earthmoving operations. Journal of Information Technology in Construction (ITcon), 19(9), pp. 169–184. IbrahimM. MoselhiO. 2014 Automated productivity assessment of earthmoving operations Journal of Information Technology in Construction (ITcon) 19 9 169 184 Search in Google Scholar

Kalal, Z., Mikolajczyk, K., & Matas, J. (2011). Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), pp. 1409–1422. KalalZ. MikolajczykK. MatasJ. 2011 Tracking-learning-detection IEEE Transactions on Pattern Analysis and Machine Intelligence 34 7 1409 1422 10.1109/TPAMI.2011.239 Search in Google Scholar

Kim, H., Bang, S., Jeong, H., Ham, Y., and Kim, H. (2018a). Integration of imaging and simulation for earthmoving productivity analysis. In: ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction in Berlin, Germany, 2018, International Association for Automation and Robotics in Construction (IAARC) Publications, Vol. 1, pp. 704–707. KimH. BangS. JeongH. HamY. KimH. 2018a Integration of imaging and simulation for earthmoving productivity analysis In: ISARC, Proceedings of the International Symposium on Automation and Robotics in Construction in Berlin, Germany, 2018 International Association for Automation and Robotics in Construction (IAARC) Publications 1 704 707 10.22260/ISARC2018/0098 Search in Google Scholar

Kim, H., Elhamim, B., Jeong, H., Kim, C., & Kim, H. (2014). On-site safety management using image processing and fuzzy inference. In Computing in Civil and Building Engineering, 2014, pp. 1013–1020. KimH. ElhamimB. JeongH. KimC. KimH. 2014 On-site safety management using image processing and fuzzy inference In Computing in Civil and Building Engineering 2014 1013 1020 10.1061/9780784413616.126 Search in Google Scholar

Kim, H., Kim, H., Hong, Y. W., & Byun, H. (2018b). Detecting construction equipment using a region-based fully convolutional network and transfer learning. Journal of Computing in Civil Engineering, 32(2), pp. 04017082. KimH. KimH. HongY. W. ByunH. 2018b Detecting construction equipment using a region-based fully convolutional network and transfer learning Journal of Computing in Civil Engineering 32 2 04017082 10.1061/(ASCE)CP.1943-5487.0000731 Search in Google Scholar

Kim, J., & Chi, S. (2019). Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles. Automation in Construction, 104, pp. 255–264. KimJ. ChiS. 2019 Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles Automation in Construction 104 255 264 10.1016/j.autcon.2019.03.025 Search in Google Scholar

Kim, J., & Chi, S. (2020). Multi-camera vision-based productivity monitoring of earthmoving operations. Automation in Construction, 112, pp. 10312. KimJ. ChiS. 2020 Multi-camera vision-based productivity monitoring of earthmoving operations Automation in Construction 112 10312 10.1016/j.autcon.2020.103121 Search in Google Scholar

Kim, J., Chi, S., & Seo, J. (2018). Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks. Automation in Construction, 87, pp. 297–308. KimJ. ChiS. SeoJ. 2018 Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks Automation in Construction 87 297 308 10.1016/j.autcon.2017.12.016 Search in Google Scholar

Kim, J., Ham, Y., Chung, Y., & Chi, S. (2019). Systematic camera placement framework for operation-level visual monitoring on construction jobsites. Journal of Construction Engineering and Management, 145(4), pp. 04019019. KimJ. HamY. ChungY. ChiS. 2019 Systematic camera placement framework for operation-level visual monitoring on construction jobsites Journal of Construction Engineering and Management 145 4 04019019 10.1061/(ASCE)CO.1943-7862.0001636 Search in Google Scholar

Kovačić, B. (2013). Uvod u Matlab. In: Matematički alati u elektrotehnici, udžbenik, Tehničko veleučilište u Zagrebu, pp. 6–16. KovačićB. 2013 Uvod u Matlab In: Matematički alati u elektrotehnici, udžbenik Tehničko veleučilište u Zagrebu 6 16 Search in Google Scholar

Liu, Q., Feng, C., Song, Z., Louis, J., & Zhou, J. (2019). Deep learning model comparison for vision-based classification of full/empty-load trucks in earthmoving operations. Applied Sciences, 9(22), p. 4871. LiuQ. FengC. SongZ. LouisJ. ZhouJ. 2019 Deep learning model comparison for vision-based classification of full/empty-load trucks in earthmoving operations Applied Sciences 9 22 4871 10.3390/app9224871 Search in Google Scholar

Maini, V., & Sabri, S. (2017). Neural networks & deep learning. In: Maini, S. (ed.), Machine Learning for Humans, e-book, pp. 68–80, Available at https://everythingcomputerscience.com/books/Machine%20Learning%20for%20Humans.pdf [accessed 11 March, 2020]. MainiV. SabriS. 2017 Neural networks & deep learning In: MainiS. (ed.), Machine Learning for Humans e-book, 68 80 Available at https://everythingcomputerscience.com/books/Machine%20Learning%20for%20Humans.pdf [accessed 11 March, 2020]. Search in Google Scholar

MathWorks. Available at https://www.mathworks.com/products/matlab.html [accessed 11 March, 2020]. MathWorks Available at https://www.mathworks.com/products/matlab.html [accessed 11 March, 2020]. Search in Google Scholar

Mawdesley, M. J., Al-Jibouri, S. H., Askew, W. H., & Patterson, D. E. (2002). A model for the automated generation of earthwork planning activities. Construction Innovation, 2(4), pp. 249–268. MawdesleyM. J. Al-JibouriS. H. AskewW. H. PattersonD. E. 2002 A model for the automated generation of earthwork planning activities Construction Innovation 2 4 249 268 10.1108/14714170210814793 Search in Google Scholar

Memarzadeh, M., Golparvar-Fard, M., & Niebles, J. C. (2013). Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors. Automation in Construction, 32, pp. 24–37. MemarzadehM. Golparvar-FardM. NieblesJ. C. 2013 Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors Automation in Construction 32 24 37 10.1016/j.autcon.2012.12.002 Search in Google Scholar

Microsoft. Available at https://visualstudio.microsoft.com/ [accessed 11 March, 2020]. Microsoft Available at https://visualstudio.microsoft.com/ [accessed 11 March, 2020]. Search in Google Scholar

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Introduction. In: Bach, F. (ed.), Foundations of Machine Learning, The MIT Press, Cambridge, Massachusetts, London, England, pp. 1–8. MohriM. RostamizadehA. TalwalkarA. 2018 Introduction In: BachF. (ed.), Foundations of Machine Learning The MIT Press Cambridge, Massachusetts, London, England 1 8 10.4159/9780674984721-002 Search in Google Scholar

Montaser, A., & Moselhi, O. (2012). RFID+ for tracking earthmoving operations. In: Cai, H. (ed.), Construction Research Congress 2012: Construction Challenges in a Flat World in West Lafayette, Indiana, 2012. Americal Society of Civil Engineering (ASCE) Publication, Cdr edition (May 22, 2012), pp. 1011–1020. MontaserA. MoselhiO. 2012 RFID+ for tracking earthmoving operations In: CaiH. (ed.), Construction Research Congress 2012: Construction Challenges in a Flat World in West Lafayette, Indiana, 2012 Americal Society of Civil Engineering (ASCE) Publication Cdr edition May 22 2012 1011 1020 10.1061/9780784412329.102 Search in Google Scholar

Montaser, A., & Moselhi, O. (2013). Tracking scraper-pusher fleet operations using wireless technologies. In: 4th Construction Specialty Conference Proceedings of the International Conference in Montreal, Quebec, 2013, Canadian Society for Civil Engineering Annual Conference (CSCE 2013), CON-073-1 – CON-073-10. MontaserA. MoselhiO. 2013 Tracking scraper-pusher fleet operations using wireless technologies In: 4th Construction Specialty Conference Proceedings of the International Conference in Montreal, Quebec, 2013 Canadian Society for Civil Engineering Annual Conference (CSCE 2013) CON-073-1 CON-073-10 Search in Google Scholar

Montaser, A., & Moselhi, O. (2014). Truck+ for earthmoving operations. Journal of Information Technology in Construction (ITcon), 19(25), pp. 412–433. MontaserA. MoselhiO. 2014 Truck+ for earthmoving operations Journal of Information Technology in Construction (ITcon) 19 25 412 433 Search in Google Scholar

Montaser, A., Bakry, I., Alshibani, A., & Moselhi, O. (2012). Estimating productivity of earthmoving operations using spatial technologies. Canadian Journal of Civil Engineering, 39(9), pp. 1072–1082. MontaserA. BakryI. AlshibaniA. MoselhiO. 2012 Estimating productivity of earthmoving operations using spatial technologies Canadian Journal of Civil Engineering 39 9 1072 1082 10.1139/l2012-059 Search in Google Scholar

Ndekugri, I., & Mcdonnell, B. (1999). Differing site conditions risks: A FIDIC/engineering and construction contract comparison. Engineering Construction and Architectural Management, 6(2), pp.177–187. NdekugriI. McdonnellB. 1999 Differing site conditions risks: A FIDIC/engineering and construction contract comparison Engineering Construction and Architectural Management 6 2 177 187 10.1108/eb021110 Search in Google Scholar

Python Software Foundation. Available at https://www.python.org [accessed 11 March, 2020]. Python Software Foundation Available at https://www.python.org [accessed 11 March, 2020]. Search in Google Scholar

Radujković, M., Burcar Dunović, I., Dolaček Alduk, Z., Nahod, M.M., & Vukomanović, M. (2015). Uvod u organizaciju građenja. In: Radujković, M. (ed.), Organizacija građenja, Sveučilište u Zagrebu, Građevinski fakultet, Zagreb, pp. 15–55. RadujkovićM. Burcar DunovićI. Dolaček AldukZ. NahodM.M. VukomanovićM. 2015 Uvod u organizaciju građenja In: RadujkovićM. (ed.), Organizacija građenja Sveučilište u Zagrebu, Građevinski fakultet Zagreb 15 55 Search in Google Scholar

Rezazadeh Azar, E. (2016). Construction equipment identification using marker-based recognition and an active zoom camera. Journal of Computing in Civil Engineering, 30(3), p. 04015033. Rezazadeh AzarE. 2016 Construction equipment identification using marker-based recognition and an active zoom camera Journal of Computing in Civil Engineering 30 3 04015033 10.1061/(ASCE)CP.1943-5487.0000507 Search in Google Scholar

Rezazadeh Azar, E., & McCabe, B. (2012). Automated visual recognition of dump trucks in construction videos. Journal of Computing in Civil Engineering, 26(6), pp. 769–781. Rezazadeh AzarE. McCabeB. 2012 Automated visual recognition of dump trucks in construction videos Journal of Computing in Civil Engineering 26 6 769 781 10.1061/(ASCE)CP.1943-5487.0000179 Search in Google Scholar

Rezazadeh Azar, E., Dickinson, S., & McCabe, B. (2013). Server-customer interaction tracker: Computer vision–based system to estimate dirt-loading cycles. Journal of Construction Engineering and Management, 139(7), pp. 785–794. Rezazadeh AzarE. DickinsonS. McCabeB. 2013 Server-customer interaction tracker: Computer vision–based system to estimate dirt-loading cycles Journal of Construction Engineering and Management 139 7 785 794 10.1061/(ASCE)CO.1943-7862.0000652 Search in Google Scholar

Roberts, D., & Golparvar-Fard, M. (2019). End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level. Automation in Construction, 105, p. 102811. RobertsD. Golparvar-FardM. 2019 End-to-end vision-based detection, tracking and activity analysis of earthmoving equipment filmed at ground level Automation in Construction 105 102811 10.1016/j.autcon.2019.04.006 Search in Google Scholar

Salem, A., Salah, A., Ibrahim, M., & Moselhi, O. (2017). Study of factors influencing productivity of hauling equipment in earthmoving projects using fuzzy set theory. International Journal of Innovation, Management and Technology, 8(2), pp. 151–154. SalemA. SalahA. IbrahimM. MoselhiO. 2017 Study of factors influencing productivity of hauling equipment in earthmoving projects using fuzzy set theory International Journal of Innovation, Management and Technology 8 2 151 154 10.18178/ijimt.2017.8.2.719 Search in Google Scholar

Šopić, M., & Vukomanović, M. (2019). Video analiza praćenja kretanja i rada kamiona kipera na gradilištu. In: Zajednički temelji 2019 – Sedmi skup mladih istraživača iz područja građevinarstva i srodnih tehničkih znanosti proceedings of the conference in Rijeka, Hrvatska, 2019, pp. 107–113. ŠopićM. VukomanovićM. 2019 Video analiza praćenja kretanja i rada kamiona kipera na gradilištu In: Zajednički temelji 2019 – Sedmi skup mladih istraživača iz područja građevinarstva i srodnih tehničkih znanosti proceedings of the conference in Rijeka Hrvatska 2019 107 113 Search in Google Scholar

Šopić, M., Vukomanović, M., & Car-Pušić, D. (2018). Značaj vizualnih tehnologija za praćenje progresa i procjene produktivnosti zemljanih radova. e-Zbornik, elektronički zbornik radova Građevinskog fakulteta Sveučilišta u Mostaru, 8(15), pp. 1–9. ŠopićM. VukomanovićM. Car-PušićD. 2018 Značaj vizualnih tehnologija za praćenje progresa i procjene produktivnosti zemljanih radova e-Zbornik, elektronički zbornik radova Građevinskog fakulteta Sveučilišta u Mostaru 8 15 1 9 Search in Google Scholar

Tijanić, K., Šopić, M., Marović, I., & Car-Pušić, D. (2019). Analysis of the construction machinery work efficiency as a factor of the earthworks sustainability. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, 222(1), p. 012009. TijanićK. ŠopićM. MarovićI. Car-PušićD. 2019 Analysis of the construction machinery work efficiency as a factor of the earthworks sustainability In: IOP Conference Series: Earth and Environmental Science, IOP Publishing 222 1 012009 10.1088/1755-1315/222/1/012009 Search in Google Scholar

TLD Vision cooperation. Available at http://www.tldvision.com/ [accessed 3 March, 2020]. TLD Vision cooperation Available at http://www.tldvision.com/ [accessed 3 March, 2020]. Search in Google Scholar

Wehle, H. (2017). Machine learning, deep learning, and AI: What's the difference? In: International Conference on Data scientist innovation day in Bruxelles, Belgium, 2017. WehleH. 2017 Machine learning, deep learning, and AI: What's the difference? In: International Conference on Data scientist innovation day in Bruxelles Belgium 2017 Search in Google Scholar

Xiao, B., & Zhu, Z. (2018). Two-dimensional visual tracking in construction scenarios: A comparative study. Journal of Computing in Civil Engineering, 32(3), p. 04018006. XiaoB. ZhuZ. 2018 Two-dimensional visual tracking in construction scenarios: A comparative study Journal of Computing in Civil Engineering 32 3 04018006 10.1061/(ASCE)CP.1943-5487.0000738 Search in Google Scholar

Zou, J., & Kim, H. (2007). Using hue, saturation, and value color space for hydraulic excavator idle time analysis. Journal of Computing in Civil Engineering, 21(4), pp. 238–246. ZouJ. KimH. 2007 Using hue, saturation, and value color space for hydraulic excavator idle time analysis Journal of Computing in Civil Engineering 21 4 238 246 10.1061/(ASCE)0887-3801(2007)21:4(238) Search in Google Scholar

eISSN:
1847-6228
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Engineering, Introductions and Overviews, other