Accès libre

Capabilities of Thomson parabola spectrometer in various laser-plasma- and laser-fusion-related experiments

À propos de cet article

Citez

Donnan, F. G. (1923). Rays of positive electricity and their application to chemical analyses. By Sir J. J. Thomson, O. M. F. R. S. (2nd ed.). Pp. x + 237. London: Longmans, Green and Co., 1921. Price 16s. Journal of the Society of Chemical Industry, 42(36), 861–861. https://doi.org/10.1002/JCTB.5000423614. Donnan, F. G. (1923). Rays of positive electricity and their application to chemical analyses. By Sir J. J. Thomson, O. M. F. R. S. (2nd ed.). Pp. x + 237. London: Longmans, Green and Co., 1921. Price 16s. Journal of the Society of Chemical Industry, 42(36), 861861. https://doi.org/10.1002/JCTB.5000423614.Search in Google Scholar

Daido, H., Nishiuchi, M., Pirozhkov, A. S., Fernández, J. C., Albright, B. J., Beg, F. N., & Badziak, J. (2018). Laser-driven ion acceleration: methods, challenges and prospects. J. Phys.-Conf. Series, 959(1), 012001. https://doi.org/10.1088/1742-6596/959/1/012001. Daido, H., Nishiuchi, M., Pirozhkov, A. S., Fernández, J. C., Albright, B. J., Beg, F. N., & Badziak, J. (2018). Laser-driven ion acceleration: methods, challenges and prospects. J. Phys.-Conf. Series, 959(1), 012001. https://doi.org/10.1088/1742-6596/959/1/012001.Search in Google Scholar

Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musumeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J., & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys., 109, 103302. https://doi.org/10.1063/1.3585871. Margarone, D., Krása, J., Giuffrida, L., Picciotto, A., Torrisi, L., Nowak, T., Musumeci, P., Velyhan, A., Prokůpek, J., Láska, L., Mocek, T., Ullschmied, J., & Rus, B. (2011). Full characterization of laser-accelerated ion beams using Faraday cup, silicon carbide, and single-crystal diamond detectors. J. Appl. Phys., 109, 103302. https://doi.org/10.1063/1.3585871.Search in Google Scholar

Salvadori, M., Consoli, F., Verona, C., Cipriani, M., Anania, M. P., Andreoli, P. L., Antici, P., Bisesto, F., Costa, G., Cristofari, G., de Angelis, R., di Giorgio, G., Ferrario, M., Galletti, M., Giulietti, D., Migliorati, M., Pompili, R., & Zigler, A. (2021). Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci. Rep., 11(1), 1–16. https://doi.org/10.1038/s41598-021-82655-w. Salvadori, M., Consoli, F., Verona, C., Cipriani, M., Anania, M. P., Andreoli, P. L., Antici, P., Bisesto, F., Costa, G., Cristofari, G., de Angelis, R., di Giorgio, G., Ferrario, M., Galletti, M., Giulietti, D., Migliorati, M., Pompili, R., & Zigler, A. (2021). Accurate spectra for high energy ions by advanced time-of-flight diamond-detector schemes in experiments with high energy and intensity lasers. Sci. Rep., 11(1), 116. https://doi.org/10.1038/s41598-021-82655-w.Search in Google Scholar

Raczka, P., Nowosielski, L., Rosiński, M., Makaruk, D., Makowski, J., Zaraś-Szydłowska, A., Tchórz, P., & Badziak, J. (2019). Measurement of the electric field strength generated in the experimental chamber by 10 TW femtosecond laser pulse interaction with a solid target. J. Instrum., 14(04). https://doi.org/10.1088/1748-0221/14/04/P04008. Raczka, P., Nowosielski, L., Rosiński, M., Makaruk, D., Makowski, J., Zaraś-Szydłowska, A., Tchórz, P., & Badziak, J. (2019). Measurement of the electric field strength generated in the experimental chamber by 10 TW femtosecond laser pulse interaction with a solid target. J. Instrum., 14(04). https://doi.org/10.1088/1748-0221/14/04/P04008.Search in Google Scholar

Carroll, D. C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlström, C. G., & McKenna, P. (2010). A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration. Nucl. Instrum. Methods Phys. Res.-Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 620(1), 23–27. https://doi.org/10.1016/J.NIMA.2010.01.054. Carroll, D. C., Brummitt, P., Neely, D., Lindau, F., Lundh, O., Wahlström, C. G., & McKenna, P. (2010). A modified Thomson parabola spectrometer for high resolution multi-MeV ion measurements-Application to laser-driven ion acceleration. Nucl. Instrum. Methods Phys. Res.-Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 620(1), 2327. https://doi.org/10.1016/J.NIMA.2010.01.054.Search in Google Scholar

Wagner, F., Deppert, O., Brabetz, C., Fiala, P., Kleinschmidt, A., Poth, P., Schanz, V. A., Tebartz, A., Zielbauer, B., Roth, M., Stöhlker, T., & Bagnoud, V. (2016). Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002. https://doi.org/10.1103/PhysRevLett.116.205002. Wagner, F., Deppert, O., Brabetz, C., Fiala, P., Kleinschmidt, A., Poth, P., Schanz, V. A., Tebartz, A., Zielbauer, B., Roth, M., Stöhlker, T., & Bagnoud, V. (2016). Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002. https://doi.org/10.1103/PhysRevLett.116.205002.Search in Google Scholar

Alejo, A., Gwynne, D., Doria, D., Ahmed, H., Carroll, D. C., Clarke, R. J., Neely, D., Scott, G. G., Borghesi, M., & Kar, S. (2016). Recent developments in the Thomson parabola spectrometer diagnostic for laser-driven multi-species ion sources. J. Instrum., 11(10), C10005. https://doi.org/10.1088/1748-0221/11/10/C10005. Alejo, A., Gwynne, D., Doria, D., Ahmed, H., Carroll, D. C., Clarke, R. J., Neely, D., Scott, G. G., Borghesi, M., & Kar, S. (2016). Recent developments in the Thomson parabola spectrometer diagnostic for laser-driven multi-species ion sources. J. Instrum., 11(10), C10005. https://doi.org/10.1088/1748-0221/11/10/C10005.Search in Google Scholar

Kojima, S., Inoue, S., Hung Dinh, T., Hasegawa, N., Mori, M., Sakaki, H., Yamamoto, Y., Sasaki, T., Shiokawa, K., Kondo, K., Yamanaka, T., Hashida, M., Sakabe, S., Nishikino, M., & Kondo, K. (2020). Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions Rev. Sci. Instrum., 91, 53305. https://doi.org/10.1063/5.0005450. Kojima, S., Inoue, S., Hung Dinh, T., Hasegawa, N., Mori, M., Sakaki, H., Yamamoto, Y., Sasaki, T., Shiokawa, K., Kondo, K., Yamanaka, T., Hashida, M., Sakabe, S., Nishikino, M., & Kondo, K. (2020). Compact Thomson parabola spectrometer with variability of energy range and measurability of angular distribution for low-energy laser-driven accelerated ions Rev. Sci. Instrum., 91, 53305. https://doi.org/10.1063/5.0005450.Search in Google Scholar

Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams, 14(3), 293–321. https://doi.org/10.1017/S0263034600010053. Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams, 14(3), 293321. https://doi.org/10.1017/S0263034600010053.Search in Google Scholar

Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. https://doi.org/10.1063/1.1350569. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. https://doi.org/10.1063/1.1350569.Search in Google Scholar

Chodukowski, T., Borodziuk, S., Rusiniak, Z., Cikhardt, J., Jach, K., Krasa, J., Rosinski, M., Terwinska, D., Dudzak, R., Pisarczyk, T., Swierczynski, R., Burian, T., Tchorz, P., Dostal, J., Szymanski, M., Pfeifer, M., Skala, J., Singh, S., Krupka, M., & Krus, M. (2020). Neutron production in cavity pressure acceleration of plasma objects. AIP Adv., 10(8), 085206. https://doi.org/10.1063/5.0005977. Chodukowski, T., Borodziuk, S., Rusiniak, Z., Cikhardt, J., Jach, K., Krasa, J., Rosinski, M., Terwinska, D., Dudzak, R., Pisarczyk, T., Swierczynski, R., Burian, T., Tchorz, P., Dostal, J., Szymanski, M., Pfeifer, M., Skala, J., Singh, S., Krupka, M., & Krus, M. (2020). Neutron production in cavity pressure acceleration of plasma objects. AIP Adv., 10(8), 085206. https://doi.org/10.1063/5.0005977.Search in Google Scholar

Green, B. D., & Goela, J. S. (1986). Ablative acceleration of small particles to high velocity by focused laser radiation. JOSA B, 3(1), 8–14. https://doi.org/10.1364/JOSAB.3.000008. Green, B. D., & Goela, J. S. (1986). Ablative acceleration of small particles to high velocity by focused laser radiation. JOSA B, 3(1), 814. https://doi.org/10.1364/JOSAB.3.000008.Search in Google Scholar

Borodziuk, S., Kasperczuk, A., & Pisarczyk, T. (2009). Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles. Appl. Phys. Lett., 95, 231501. https://doi.org/10.1063/1.3271693. Borodziuk, S., Kasperczuk, A., & Pisarczyk, T. (2009). Cavity pressure acceleration: An efficient laser-based method of production of high-velocity macroparticles. Appl. Phys. Lett., 95, 231501. https://doi.org/10.1063/1.3271693.Search in Google Scholar

eISSN:
1508-5791
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other