Accès libre

Using microwave refraction to determine local inhomogeneities of a rotating plasma

À propos de cet article

Citez

Lehnert, B. (1971). Rotating plasmas review paper rotating plasmas. Nucl. Fusion, 11(5), 485. http://iopscience.iop.org/0029-5515/11/5/010. Lehnert, B. (1971). Rotating plasmas review paper rotating plasmas. Nucl. Fusion, 11(5), 485. http://iopscience.iop.org/0029-5515/11/5/010.Search in Google Scholar

Boeuf, J. -P. (2014). Rotating structures in low temperature magnetized plasmas – insight from particle simulations. Front. Physics, 2, 74. https://doi.org/10.3389/fphy.2014.00074. Boeuf, J. -P. (2014). Rotating structures in low temperature magnetized plasmas – insight from particle simulations. Front. Physics, 2, 74. https://doi.org/10.3389/fphy.2014.00074.Search in Google Scholar

Boeuf, J. -P., & Smolyakov, A. (2018). Preface to special topic: Modern issues and applications of E × B plasmas. Phys. Plasmas, 25(6), 061001. https://doi.org/10.1063/1.5040848. Boeuf, J. -P., & Smolyakov, A. (2018). Preface to special topic: Modern issues and applications of E × B plasmas. Phys. Plasmas, 25(6), 061001. https://doi.org/10.1063/1.5040848.Search in Google Scholar

Kaganovich, I. D., Smolyakov, A., Raitses, Y., Ahedo, E., Mikellides, I. G., Jorns, B., Taccogna, F., Gueroult, R., Tsikata, S., Bourdon, A., Boeuf, J. -P., Keidar, M., Powis, A. T., Merino, M., Cappelli, M., Hara, K., Carlsson, J. A., Fisch, N. J., Chabert, P., Schweigert, I., Lafleur, T., Matyash, K., Khrabrov, A. V., Boswell, R. W., & Fruchtman, A. (2020). Physics of E×B discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas, 27(12), 120601. https://doi.org/10.1063/5.0010135. Kaganovich, I. D., Smolyakov, A., Raitses, Y., Ahedo, E., Mikellides, I. G., Jorns, B., Taccogna, F., Gueroult, R., Tsikata, S., Bourdon, A., Boeuf, J. -P., Keidar, M., Powis, A. T., Merino, M., Cappelli, M., Hara, K., Carlsson, J. A., Fisch, N. J., Chabert, P., Schweigert, I., Lafleur, T., Matyash, K., Khrabrov, A. V., Boswell, R. W., & Fruchtman, A. (2020). Physics of E×B discharges relevant to plasma propulsion and similar technologies. Phys. Plasmas, 27(12), 120601. https://doi.org/10.1063/5.0010135.Search in Google Scholar

Lucken, R., Bourdon, A., Lieberman, M. A., & Chabert, P. (2019). Instability-enhanced transport in low temperature magnetized plasma. Phys. Plasmas, 26(7), 070702. https://doi.org/10.1063/1.5094422. Lucken, R., Bourdon, A., Lieberman, M. A., & Chabert, P. (2019). Instability-enhanced transport in low temperature magnetized plasma. Phys. Plasmas, 26(7), 070702. https://doi.org/10.1063/1.5094422.Search in Google Scholar

Gravier, E., Brochard, F., Bonhomme, G., Pierre, T., & Briançon, J. L. (2004). Low-frequency instabilities in a laboratory magnetized plasma column. Phys. Plasmas, 11(2), 529–537. https://doi.org/10.1063/1.1636479. Gravier, E., Brochard, F., Bonhomme, G., Pierre, T., & Briançon, J. L. (2004). Low-frequency instabilities in a laboratory magnetized plasma column. Phys. Plasmas, 11(2), 529537. https://doi.org/10.1063/1.1636479.Search in Google Scholar

Lockwood Estrin, F., Karkari, S. K., & Bradley, J. W. (2017). Triple probe interrogation of spokes in a HiPIMS discharge. J. Phys. D-Appl. Phys., 50(29). https://doi.org/10.1088/1361-6463/aa7544. Lockwood Estrin, F., Karkari, S. K., & Bradley, J. W. (2017). Triple probe interrogation of spokes in a HiPIMS discharge. J. Phys. D-Appl. Phys., 50(29). https://doi.org/10.1088/1361-6463/aa7544.Search in Google Scholar

Hartfuss, H. J., & Geist, T. (2013). Fusion plasma diagnostics with mm-waves: An introduction. Hamburg: Wiley. Hartfuss, H. J., & Geist, T. (2013). Fusion plasma diagnostics with mm-waves: An introduction. Hamburg: Wiley.Search in Google Scholar

Mazzucato, E. (2014). Electromagnetic waves for thermonuclear fusion research. World Scientific Publishing. Mazzucato, E. (2014). Electromagnetic waves for thermonuclear fusion research. World Scientific Publishing.Search in Google Scholar

Conway, G. D. (2006). Microwave reflectometry for fusion plasma diagnosis. Nucl. Fusion, 46(9), S665. https://doi.org/10.1088/0029-5515/46/9/S01. Conway, G. D. (2006). Microwave reflectometry for fusion plasma diagnosis. Nucl. Fusion, 46(9), S665. https://doi.org/10.1088/0029-5515/46/9/S01.Search in Google Scholar

Grekov, D. L., & Tretiak, K. K. (2017). Investigation of dual polarization reflectometry for determination of plasma density and magnetic field in a spherical tokamak. J. Fusion Energy, 36(1), 1–8. https://doi.org/10.1007/s10894-016-0114-x Grekov, D. L., & Tretiak, K. K. (2017). Investigation of dual polarization reflectometry for determination of plasma density and magnetic field in a spherical tokamak. J. Fusion Energy, 36(1), 18. https://doi.org/10.1007/s10894-016-0114-xSearch in Google Scholar

Pavlichenko, O. S., Skibenko, A. I., Fomin, I. P., Pinos, I. B., Ocheretenko, V. L., & Berezhniy, V. L. (2000). A simple method of poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry. Probl. At. Sci. Technol., 6, 172–174. Pavlichenko, O. S., Skibenko, A. I., Fomin, I. P., Pinos, I. B., Ocheretenko, V. L., & Berezhniy, V. L. (2000). A simple method of poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry. Probl. At. Sci. Technol., 6, 172174.Search in Google Scholar

Prisiazhniuk, D., Krämer-Flecken, A., Conway, G. D., Happel, T., Lebschy, A., Manz, P., Nikolaeva, V., & Stroth, U. (2017). Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry. Plasma Phys. Control. Fusion, 59(2), 025013. https://doi.org/10.1088/1361-6587/59/2/025013. Prisiazhniuk, D., Krämer-Flecken, A., Conway, G. D., Happel, T., Lebschy, A., Manz, P., Nikolaeva, V., & Stroth, U. (2017). Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry. Plasma Phys. Control. Fusion, 59(2), 025013. https://doi.org/10.1088/1361-6587/59/2/025013.Search in Google Scholar

Siusko, Y. V., & Kovtun, Yu. V. (2021). An application of microwaves refraction for inhomogeneous plasma diagnostic. Probl. At. Sci. Technol., 2, 163–170. https://doi.org/10.46813/2021-131-163. Siusko, Y. V., & Kovtun, Yu. V. (2021). An application of microwaves refraction for inhomogeneous plasma diagnostic. Probl. At. Sci. Technol., 2, 163170. https://doi.org/10.46813/2021-131-163.Search in Google Scholar

Kovtun, Yu. V., & Siusko, Y. V. (2019). Determining local inhomogeneities of rotating plasma density via microwave refraction. Phys. Lett. A, 383(31), 125880. https://doi.org/10.1016/j.physleta.2019.125880. Kovtun, Yu. V., & Siusko, Y. V. (2019). Determining local inhomogeneities of rotating plasma density via microwave refraction. Phys. Lett. A, 383(31), 125880. https://doi.org/10.1016/j.physleta.2019.125880.Search in Google Scholar

Kovtun, Y., & Siusko, Y. (2020). Determining the angular frequency of rotating cylinder via microwave. In 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings (pp. 888–892). DOI: 10.1109/UkrMW49653.2020.9252707. Kovtun, Y., & Siusko, Y. (2020). Determining the angular frequency of rotating cylinder via microwave. In 2020 IEEE Ukrainian Microwave Week, UkrMW 2020 – Proceedings (pp. 888892). DOI: 10.1109/UkrMW49653.2020.9252707.Open DOISearch in Google Scholar

Kovtun, Y. V., Shapoval, A. N., & Siusko, Y. V. (2019). Observation of multiply charged states ions in a high-power pulsed reflex discharge. Plasma Sources Sci. Technol., 28(10), 105009. https://doi.org/10.1088/1361-6595/ab46c8. Kovtun, Y. V., Shapoval, A. N., & Siusko, Y. V. (2019). Observation of multiply charged states ions in a high-power pulsed reflex discharge. Plasma Sources Sci. Technol., 28(10), 105009. https://doi.org/10.1088/1361-6595/ab46c8.Search in Google Scholar

Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., Larin, Yu. V., & Yuferov, V. B. (2009). Emission of multicomponent plasma pulsed reflex discharge. Bulletin of the National Technical University “KhPI” Series “High voltage engineering and electrophysics”, 39, 101–108. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., Larin, Yu. V., & Yuferov, V. B. (2009). Emission of multicomponent plasma pulsed reflex discharge. Bulletin of the National Technical University “KhPI” Series “High voltage engineering and electrophysics”, 39, 101108.Search in Google Scholar

Shanmugan, K. S., & Breipohl, A. M. (1988). Random signals, detection, estimation and data analysis. Hoboken: Wiley. Shanmugan, K. S., & Breipohl, A. M. (1988). Random signals, detection, estimation and data analysis. Hoboken: Wiley.Search in Google Scholar

Kovtun, Yu. V., & Siusko, Y. V. (2018). Determining local inhomogeneities of the rotating plasma density via microwave refraction. In International Conference–School on Plasma Physics and Controlled Fusion. Books of abstract, September 10–13, 2018 (p. 175). Kharkiv, Ukraine. Kovtun, Yu. V., & Siusko, Y. V. (2018). Determining local inhomogeneities of the rotating plasma density via microwave refraction. In International Conference–School on Plasma Physics and Controlled Fusion. Books of abstract, September 10–13, 2018 (p. 175). Kharkiv, Ukraine.Search in Google Scholar

Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures. John Wiley & Sons. Bendat, J. S., & Piersol, A. G. (2011). Random data: analysis and measurement procedures. John Wiley & Sons.Search in Google Scholar

Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E×B fields. Ukr. J. Phys., 58(05), 450–457. https://doi.org/10.15407/ujpe58.05.0450. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E×B fields. Ukr. J. Phys., 58(05), 450457. https://doi.org/10.15407/ujpe58.05.0450.Search in Google Scholar

Kovtun, Yu. V., Syusko, Y. V., Skibenko, E. I., & Skibenko, A. I. (2018). Experimental study of inhomogeneous reflex-discharge plasma using microwave refraction interferometry. Ukr. J. Phys., 63(12), 1057. https://doi.org/10.15407/ujpe63.12.1057. Kovtun, Yu. V., Syusko, Y. V., Skibenko, E. I., & Skibenko, A. I. (2018). Experimental study of inhomogeneous reflex-discharge plasma using microwave refraction interferometry. Ukr. J. Phys., 63(12), 1057. https://doi.org/10.15407/ujpe63.12.1057.Search in Google Scholar

Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E × B fields. Ukr. J. Phys., 58, 450. Kovtun, Yu. V., Skibenko, E. I., Skibenko, A. I., & Yuferov, V. B. (2013). Rotation of plasma layers with various densities in crossed E × B fields. Ukr. J. Phys., 58, 450.Search in Google Scholar

Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., & Yuferov, V. B. (2013). Analysis of errors in the plasma rotation velocity measurement by the method of microwave correlation reflectometry. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (pp. 554–556). https://doi.org/10.1109/MSMW.2013.6622119. Kovtun, Yu. V., Skibenko, A. I., Skibenko, E. I., & Yuferov, V. B. (2013). Analysis of errors in the plasma rotation velocity measurement by the method of microwave correlation reflectometry. In 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (pp. 554556). https://doi.org/10.1109/MSMW.2013.6622119.Search in Google Scholar

eISSN:
1508-5791
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other