Accès libre

A new geostatistical tool for the analysis of the geographical variability of the indoor radon activity

À propos de cet article

Citez

1. International Agency for Research on Cancer. (1988). Manmade mineral fibres and radon. (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 43). Lyon, France: IARC.Search in Google Scholar

2. United Nations Scientific Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.Search in Google Scholar

3. Kavasi, N., Somlai, J., Szeiler, G., Szabo, B., Schafer, I., & Kovacs, T. (2010). Estimation of effective doses to cavers based on radon measurements carried out in seven caves of the Bakony Mountains in Hungary. Radiat. Meas., 45, 1068–1071. https://doi.org/10.1016/j.radmeas.2010.07.017.10.1016/j.radmeas.2010.07.017Search in Google Scholar

4. Quarto, M., Pugliese, M., Loffredo, F., Zambella, C., & Roca, V. (2014). Radon measurements and effective dose from radon inhalation estimation in the neapolitan catacombs. Radiat. Prot. Dosim., 158, 442–446. https://doi.org/10.1093/rpd/nct255.10.1093/rpd/nct255Search in Google Scholar

5. Kendall, G. M. (2004). Controls on radioactivity in water supplies in England and Wales, with especial reference to radon. J. Radiol. Prot., 24, 409–412. DOI: 10.1088/0952-4746/24/4/005.10.1088/0952-4746/24/4/005Search in Google Scholar

6. Demoury, C., Ielsch, G., Hemon, D., Laurent, O., Laurier, D., Clavel, J., & Guillevic, J. (2013). A statistical evaluation of the influence of housing characteristics and geogenic radon potential on indoor radon concentrations in France. J. Environ. Radioact., 126, 216–225. https://doi.org/10.1016/j.jenvrad.2013.08.006.10.1016/j.jenvrad.2013.08.006Search in Google Scholar

7. Quarto, M., Pugliese, M., Loffredo, F., & Roca, V. (2016). Indoor radon concentration and gamma dose rate in dwellings of the Province of Naples, South Italy, and estimation of the effective dose to the inhabitants. Radioprotection, 51(1), 31–36. DOI: 10.1051/radiopro/2015021.10.1051/radiopro/2015021Search in Google Scholar

8. Bossew, P., Zunić, Z. S., Stojanovska, Z., Tollefsen, T., Carpentieri, C., Veselinovic, N., Komatina, S., Vaupotic, J., Simovic, R. D., Antignani, S., & Bochicchio, F. (2014). Geographical distribution of the annual mean radon concentrations in primary schools of Southern Serbia – application of geostatistical methods. J. Environ. Radioact., 127, 141–148. https://doi.org/10.1016/j.jenvrad.2013.09.015.10.1016/j.jenvrad.2013.09.015Search in Google Scholar

9. Menzler, S., Piller, G., Gruson, M., Rosario, A. S., Wichmann, H. E., & Kreienbrock, L. (2008). Population attributable fraction for lung cancer due to residential radon in Switzerland and Germany. Health Phys., 95(2), 179–189. DOI: 10.1097/01. HP.0000309769.55126.03.10.1097/01Search in Google Scholar

10. McBratney, A. B., Webster, R., & Burgess, T. M. (1981). The design of optimal sampling schemes for local estimation and mapping of regionalized variables-I: Theory and method. Comput. Geosci., 7(4), 331–334. https://doi.org/10.1016/0098-3004(81)90077-7.10.1016/0098-3004(81)90077-7Search in Google Scholar

11. Zhu, H. C., Charlet, J. M., & Poffijn, A. (2001). Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci. Total Environ., 272(1/3), 203–210. https://doi.org/10.1016/S0048-9697(01)00693-3.10.1016/S0048-9697(01)00693-3Search in Google Scholar

12. Vitale, S., & Ciarcia, S. (2013). Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy). Tectono-physics, 583, 164–182. https://doi.org/10.1016/j.tecto.2012.11.004.10.1016/j.tecto.2012.11.004Search in Google Scholar

13. Pandey, M. D., & Nathwani, J. S. (1996). Measurement of socio-economic inequality using the life-quality index. Soc. Indic. Res., 39, 187–202.10.1007/BF00286973Search in Google Scholar

14. Chiles, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.10.1002/9780470316993Search in Google Scholar

15. Lark, R. M. (2000). Estimating variograms of soil properties by the method-of-moments and maximum likelihood. Eur. J. Soil Sci., 51(4), 717–728. https://doi.org/10.1046/j.1365-2389.2000.00345.x.10.1046/j.1365-2389.2000.00345.xSearch in Google Scholar

16. Borgoni, R., Quatto, P., Somà, G., & de Bartolo, D. (2010). A geostatistical approach to define guidelines for radon prone area identification. Stat. Methods Appl., 19, 255–276. DOI: 10.1007/s10260-009-0128-x.10.1007/s10260-009-0128-xSearch in Google Scholar

17. Gini, C. (1912). Memorie di metodologia statistica. Vol. 1. Variabilita concentrazione. Rome: Libreria Eredi Virgilio Veschi.Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other