Accès libre

Radon-based technique for the analysis of atmospheric stability – a case study from Central Poland

À propos de cet article

Citez

1. Pasquil, D. (1961). The estimation of the dispersion of windborne material. Met. Mag., 90, 33–49.Search in Google Scholar

2. Turner, B. (1964). A diffusion model for an urban area. J. Appl. Meteorol., 3, 83–91.10.1175/1520-0450(1964)003<0083:ADMFAU>2.0.CO;2Open DOISearch in Google Scholar

3. Williams, A. G., Chambers, S. D., & Griffiths, A. (2013). Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound.-Layer Meteor., 149, 381–402. doi: 10.1007/s10546-013-9849-3.10.1007/s10546-013-9849-3Open DOISearch in Google Scholar

4. Chambers, S. D., Williams, A. G., Crawford, J., & Griffiths, A. D. (2015). On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys., 15, 1175–1190.10.5194/acp-15-1175-2015Search in Google Scholar

5. Chambers, S. D., Podstawczyńska, A., Williams, A. G., & Pawlak, W. (2016a). Characterising the influence of atmospheric mixing state on urban heat Island intensity using radon-222. Atmos. Environ., 147, 355–368.10.1016/j.atmosenv.2016.10.026Search in Google Scholar

6. Chambers, S. D., Galeriu, D., Williams, A. G., Melintescu, A., Griffiths, A. D., Crawford, J., Dyer, L., Duma, M., & Zorila, B. (2016b). Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: characterising the atmospheric mixing state. J. Environ. Radioact., 154, 68–82.10.1016/j.jenvrad.2016.01.010Search in Google Scholar

7. Podstawczyńska, A. (2016). Differences of nearground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity. Atmos. Environ., 126, 225–234.10.1016/j.atmosenv.2015.11.037Search in Google Scholar

8. Williams, A. G., Chambers, S. D., Conen, F., Reimann, S., Hill, M., Griffiths, A. D., & Crawford, J. (2016). Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus Ser. B-Chem. Phys. Meteorol., 68, 30967. DOI: 10.3402/tellusb.v68.30967.10.3402/tellusb.v68.30967Search in Google Scholar

9. Turekian, K. K., Nozaki, Y., & Benninger, L. K. (1977). Geochemistry of atmospheric radon and radon products. Annu. Rev. Earth Planet. Sci., 5, 227–255.10.1146/annurev.ea.05.050177.001303Open DOISearch in Google Scholar

10. Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. M., & Turekian, K. K. (1993). Transport and residence times of continental aerosols inferred from a global three-dimensional simulation of 210Pb. J. Geophys. Res.-Atmos., 98(D11), 20573–20586. DOI: 10.1029/93JD02456.10.1029/93JD02456Search in Google Scholar

11. Szegvary, T., Conen, F., & Ciais, P. (2009). European 222Rn inventory for applied atmospheric studies. Atmos. Environ., 43(8), 1536–1539.10.1016/j.atmosenv.2008.11.025Search in Google Scholar

12. Griffiths, A. D., Zahorowski, W., Element, A., & Werczynski, S. (2010). A map of radon flux at the Australian land surface. Atmos. Chem. Phys., 10, 8969–8982.10.5194/acp-10-8969-2010Search in Google Scholar

13. Karstens, U., Schwingshackl, C., Schmithusen, D., & Levin, I. (2015). A process-based 222radon flux map for Europe and its comparison to long-term observations. Atmos. Chem. Phys., 15, 12845–12865. DOI: 10.5194/acp-15-12845-2015.10.5194/acp-15-12845-2015Open DOISearch in Google Scholar

14. Chambers, S. D., Williams, A. G., Zahorowski, W., Griffiths, A., & Crawford, J. (2011). Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus Ser. B-Chem. Phys. Meteorol., 63, 843–859. DOI: 10.1111/j.1600-0889.2011.00565.x.10.1111/j.1600-0889.2011.00565.xOpen DOISearch in Google Scholar

15. Wigand, A., & Wenk, F. (1928). Der gehalt der luftan radium-emanation, nach Messungenbei Flugzeugaufstiegen. Ann. Phys., 86(13), 657–686.10.1002/andp.19283911302Open DOISearch in Google Scholar

16. Moses, H., Stehney, A. F., & Lucas, H. F. J. (1960). The effect of meteorological variables upon the vertical and temporal distributions of atmospheric radon. J. Geophys. Res., 65, 1223–1238.10.1029/JZ065i004p01223Open DOISearch in Google Scholar

17. Sisigina, T. I. (1964). Vertical distribution of radon in the boundary layer of the atmosphere (0-300m) in connection with changing meteorological conditions. U.D.C.551.594.1. Izv. Geophys., 3, 414–421.Search in Google Scholar

18. Hosler, C. R. (1966). Meteorological effects on atmospheric concentrations of radon (Rn222), RaB (Pb214), and RaC (Bi214) near the ground. Mon. Weather Rev., 94, 89.10.1175/1520-0493(1966)094<0089:MEOACO>2.3.CO;2Search in Google Scholar

19. Allegrini, I., Febo, A., Pasini, A., & Schiarini, S. (1994). Monitoring of the nocturnal mixed layer by means of participate radon progeny measurement. J. Geophys. Res.-Atmos., 99, 18765–18777. DOI: 10.1029/94JD00783.10.1029/94JD00783Open DOISearch in Google Scholar

20. Desideri, D., Roselli, C., Feduzi, L., & Meli, M. A. (2006). Monitoring the atmospheric stability by using radon concentration measurements: a study in a central Italy site. J. Radioanal. Nucl. Chem., 270, 523–530.10.1007/s10967-006-0458-1Search in Google Scholar

21. Vecchi, R., Marcazzan, G., & Valli, G. (2007). A study on nighttime–daytime PM10 concentration and elemental composition in relation to atmospheric dispersion in the urban area of Milan (Italy). Atmos. Environ., 41, 2136–2144.10.1016/j.atmosenv.2006.10.069Search in Google Scholar

22. Wang, F., Zhang, H., Ancora, M. P., & Deng, X. -D. (2013). Measurement of atmospheric stability index by monitoring radon natural radioactivity. China Environ. Sci., 33(4), 594–598.10.1155/2013/626989Search in Google Scholar

23. Avino, P., Brocco, D., Lepore, L., & Pareti, S. (2003). Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter. Ann. Chim., 93(5/6), 589–594.Search in Google Scholar

24. Pitari, G., De Luca, N., Coppari, E., Di Carlo, P., & Di Genova, G. (2015). Seasonal variation of night-time accumulated Rn-222 in central Italy. Environ. Earth Sci., 73(12), 8589–8597. DOI: 10.1007/s12665-015-4023-5.10.1007/s12665-015-4023-5Open DOISearch in Google Scholar

25. Bulko, M., Holy, K., & Mullerova, M. (2018). On the relation between outdoor 222Rn and atmospheric stability determined by a modified Turner method. J. Environ. Radioact., 189, 79–92.10.1016/j.jenvrad.2018.03.00829626723Search in Google Scholar

26. Cohen, L. D., Barr., S., Krablin, R., & Newstein, H. (1972). Steady-state vertical turbulent diffusion of radon. J. Geophys. Res., 77, 2654–2668.10.1029/JC077i015p02654Search in Google Scholar

27. Fujinami, N., & Osaka, S. (1987). Variations in radon 222 daughter concentrations in surface air with atmospheric stability. J. Geopys. Res.-Atmos., 92(d1), 1041–1043.10.1029/JD092iD01p01041Search in Google Scholar

28. Perrino, C., Pietrodangelo, A., & Febo, A. (2001). An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ., 35, 5235–5244.10.1016/S1352-2310(01)00349-1Search in Google Scholar

29. Perrino, C. (2012). Natural radioactivity from radon progeny as a tool for the interpretation of atmospheric pollution events. In Sources and measurements of radon and radon progeny applied to climate and air quality studies (pp. 151–159). Vienna: International Atomic Energy Agency. (IAEA Proceedings Series).Search in Google Scholar

30. Pal, S., Lopez, M., Schmidt, M., Ramonet, M., Gibert, F., Xueref-Remy, I., & Ciais, P. (2015). Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France. J. Geophys. Res.-Atmos., 120, 623–643. DOI: 10.1002/2014JD022322.10.1002/2014JD022322Open DOISearch in Google Scholar

31. Williams, A. G., Zahorowski, W., Chambers, S. D., Griffiths, A., Hacker, J. M., Element, A., & Werczynski, S. (2011). The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci., 68, 155–174. DOI: 10.1175/2012JAS3576.1.10.1175/2012JAS3576.1Open DOISearch in Google Scholar

32. Pal, S. (2014). Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap. Remote Sens., 6(9), 8468–8493.10.3390/rs6098468Search in Google Scholar

33. Wang, F., Chambers, S. D., Zhang, Z., Williams, A. G., Deng, X., Zhang, H., Lonati, G., Crawford, J., Griffiths, A. D., Ianniello, A., & Allegrini, I. (2016). Quantifying stability influences on air pollution in Lanzhou, China, using a radon-based “stability monitor”: seasonality and extreme events. Atmos. Environ., 145, 376–391.10.1016/j.atmosenv.2016.09.014Search in Google Scholar

eISSN:
0029-5922
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Chemistry, Nuclear Chemistry, Physics, Astronomy and Astrophysics, other