1. bookVolume 62 (2020): Edition 1 (June 2020)
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Encapsulation Techniques and Test Methods of Evaluating the Bacteria-Based Self-Healing Efficiency of Concrete: A Literature Review

Publié en ligne: 09 Jul 2020
Volume & Edition: Volume 62 (2020) - Edition 1 (June 2020)
Pages: 63 - 85
Reçu: 31 Mar 2020
Accepté: 07 May 2020
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais

1. Rajczakowska M, Habermehl-Cwirzen K, Hedlund H & Cwirzen A: “Autogenous selfhealing: A better solution for concrete”. Journal of Materials in Civil Engineering, V. 31, No. 9, 2019. 03119001-03119001. doi:10.1061/(ASCE)MT.1943-5533.0002764.10.1061/(ASCE)MT.1943-5533.0002764Search in Google Scholar

2. Mahmoodi S & Sadeghian P: “Self-healing concrete: A review of recent research developments and existing research gaps”. Proceedings, Annual Conference - Canadian Society for Civil Engineering, June, 2019.Search in Google Scholar

3. Khaliq W & Ehsan M: “Crack healing in concrete using various bio influenced selfhealing techniques”. Construction and Building Materials: Part 1, V. 102, 2016, pp. 349-357. doi:10.1016/j.conbuildmat.2015.11.006.10.1016/j.conbuildmat.2015.11.006Search in Google Scholar

4. Tziviloglou E, Wiktor V, Jonkers H & Schlangen E: “Bacteria-based self-healing concrete to increase liquid tightness of cracks”. Construction and Building Materials, V. 122, 2016, pp. 118-125. doi:10.1016/j.conbuildmat.2016.06.080.10.1016/j.conbuildmat.2016.06.080Search in Google Scholar

5. Erşan Y, Hernandez-Sanabria E, Boon N & De Belie N: “Enhanced crack closure performance of microbial mortar through nitrate reduction”. Cement and Concrete Composites, V. 70, 2016, pp. 159-170. doi:10.1016/j.cemconcomp.2016.04.001.10.1016/j.cemconcomp.2016.04.001Search in Google Scholar

6. Wiktor V & Jonkers H: “Quantification of crack-healing in novel bacteria-based selfhealing concrete”. Cement and Concrete Composites, V. 33, No. 7, 2011, pp. 763-770. doi:10.1016/j.cemconcomp.2011.03.012.10.1016/j.cemconcomp.2011.03.012Search in Google Scholar

7. Alazhari M, Sharma T, Heath A, Cooper R & Paine K: “Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete”. Construction & Building Materials, V. 160, 2018, pp. 610-619.10.1016/j.conbuildmat.2017.11.086Search in Google Scholar

8. Zhang J, Liu Y, Feng T, Zhou M, Zhao L, Zhou A, & Li Z: “Immobilizing bacteria in expanded perlite for the crack self-healing in concrete”. Construction and Building Materials, V. 148, 2017, pp. 610-617. doi:10.1016/j.conbuildmat.2017.05.021.10.1016/j.conbuildmat.2017.05.021Search in Google Scholar

9. Wang J, Van Tittelboom K, De Belie N & Verstraete W: “Use of silica gel or polyurethane immobilized bacteria for self-healing concrete”. Construction and Building Materials, V. 26, No. 1, 2012, pp. 532-540. doi:10.1016/j.conbuildmat.2011.06.054.10.1016/j.conbuildmat.2011.06.054Search in Google Scholar

10. Wang J, Snoeck D, Van Vlierberghe S, Verstraete W & De Belie N.: “Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic selfhealing in concrete”. Construction and Building Materials, V. 68, 2014, pp. 110-119. doi:10.1016/j.conbuildmat.2014.06.018.10.1016/j.conbuildmat.2014.06.018Search in Google Scholar

11. Jianyun E, Arn E, Didier E, Virginie E, Nico E & Nele E: “Application of modifiedalginate encapsulated carbonate producing bacteria in concrete: A promising strategy for crack self-healing”. Frontiers in Microbiology, 2015. doi:10.3389/fmicb.2015.01088.10.3389/fmicb.2015.01088460230426528254Search in Google Scholar

12. Trenson G: “Application of pH responsive hydrogel encapsulated bacteria for selfhealing concrete”. Doctoral Thesis, Ghent Univ., Ghent, Belgium.Search in Google Scholar

13. Erşan Y, Da Silva F, Boon N, Verstraete W & De Belie N: “Screening of bacteria and concrete compatible protection materials”. Construction and Building Materials, V. 88, 2015, pp. 96-203. doi:10.1016/j.conbuildmat.2015.04.027.10.1016/j.conbuildmat.2015.04.027Search in Google Scholar

14. Bhaskar S, Anwar Hossain K, Lachemi M, Wolfaardt G & Otini Kroukamp M: “Effect of self-healing on strength and durability of zeolite-immobilized bacterial cementitious mortar composites”. Cement and Concrete Composites, V. 82, 2017, pp. 23-33. doi:10.1016/j.cemconcomp.2017.05.01Search in Google Scholar

15. Xu J & Wang X: “Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material”. Construction and Building Materials, V. 167, 2018, pp. 1-14. doi:10.1016/j.conbuildmat.2018.02.020.10.1016/j.conbuildmat.2018.02.020Search in Google Scholar

16. Gupta S, Kua H & Pang S: “Healing cement mortar by immobilization of bacteria in biochar: An integrated approach of self-healing and carbon sequestration”. Cement and Concrete Composites, V. 86, 2018, pp. 238-254. doi:10.1016/j.cemconcomp.2017.11.015.10.1016/j.cemconcomp.2017.11.015Search in Google Scholar

17. Kua H, Gupta S, Aday A, & Srubar W: “Biochar-immobilized bacteria and superabsorbent polymers enable self-healing of fiber-reinforced concrete after multiple damage cycles”. Cement and Concrete Composites, V. 100, 2019, pp. 35-52. doi:10.1016/j.cemconcomp.2019.03.017.10.1016/j.cemconcomp.2019.03.017Search in Google Scholar

18. Hammes F & Verstraete W: “Key roles of pH and calcium metabolism in microbial carbonate precipitation”. Reviews in Environmental Science and Biotechnology, V. 1, No. 1, 2002, pp. 3-7. doi:10.1023/A:1015135629155.10.1023/A:1015135629155Search in Google Scholar

19. Schlangen E & Jonkers H: “A two component bacteria-based self-healing concrete”. Concrete Repair, Rehabilitation & Retrofitting II, 2008, pp. 119-120. doi:10.1201/9781439828403.ch27.10.1201/9781439828403.ch27Search in Google Scholar

20. Van Tittelboom K, De Belie N, De Muynck W & Verstraete W: “Use of bacteria to repair cracks in concrete”. Cement and Concrete Research, V. 40, No. 1, 2010, pp. 157-166. doi:10.1016/j.cemconres.2009.08.025.10.1016/j.cemconres.2009.08.025Search in Google Scholar

21. De Belie N & Wang J: “Bacteria-based repair and self-healing of concrete”. Journal of Sustainable Cement-Based Materials, V. 5, No. 1-2, 2016, pp. 35-56. doi:10.1080/21650373.2015.1077754.10.1080/21650373.2015.1077754Search in Google Scholar

22. Jonkers H: “Bacteria-based self-healing concrete”. Heron - English Edition, V. 56, No. 1-2, 2011, pp. 1-12.Search in Google Scholar

23. Wang J, Soens H, Verstraete W & De Belie N: “Self-healing concrete by use of microencapsulated bacterial spores”. Cement and Concrete Research, V. 56, 2014, pp. 139-152.10.1016/j.cemconres.2013.11.009Search in Google Scholar

24. Danner T & Geiker M R: “Mineralogical sequence of self-healing products in cracked marine concrete”. Minerals, V. 9 No. 5, 2019. https://doi.org/10.3390/min905028410.3390/min9050284Search in Google Scholar

25. Xu H, Lian J, Gao M, Fu D & Yan Y: “Self-healing concrete using rubber particles to immobilize bacterial spores”. Materials, V. 12, No. 14, 2019. doi:10.3390/ma12142313.10.3390/ma12142313667810531331051Search in Google Scholar

26. Huynh N, Phuong N, Toan N & Son N: “Bacillus subtilis hu58 immobilized in micropores of diatomite for using in self-healing concrete”. Procedia Engineering, V. 171, 2017, pp. 598-605. doi:10.1016/j.proeng.2017.01.385.10.1016/j.proeng.2017.01.385Search in Google Scholar

27. Jinlong Z, Bixia M, Tingwei C, Jiayi L, Wanhan W, Bing L & Xu D: “Optimization of a binary concrete crack self-healing system containing bacteria and oxygen”. Materials, V. 10, No. 2, 2017. doi:10.3390/ma10020116.10.3390/ma10020116545920128772474Search in Google Scholar

28. Zhang J, Wang C, Wang Q, Feng J, Pan W, Zheng X & Deng X: “A binary concrete crack self-healing system containing oxygen-releasing tablet and bacteria and its ca2 - precipitation performance”. Applied Microbiology and Biotechnology, V. 100, No. 24, 2016, pp. 10295-10306.10.1007/s00253-016-7741-z27459869Search in Google Scholar

29. Seifan M, Sarmah A, Ebrahiminezhad A & Ghasemi Y: “Mechanical properties of bio self-healing concrete containing immobilized bacteria with iron oxide nanoparticles”. Applied Microbiology and Biotechnology, V. 102, No. 10, 2018, pp. 4489-4498. doi:10.1007/s00253-018-8913-9.10.1007/s00253-018-8913-929574617Search in Google Scholar

30. Purwanto H, Nugroho A & Aprilin S: “Study of volcanic-ash-impregnated-bacteria filler to the compressive strength of concrete”. Proceedings, Matec Web of Conferences, 138, 2017. doi:10.1051/matecconf/201713801014.10.1051/matecconf/201713801014Search in Google Scholar

31. Nafeesa S, Rao A & Siraj U: “Bioimmobilized limestone powder for autonomous healing of cementitious systems: A feasibility study”. Advances in Materials Science and Engineering, 2018. doi:10.1155/2018/7049121.10.1155/2018/7049121Search in Google Scholar

32. Wang J, Mignon A, Trenson G, Van Vlierberghe S, Boon N & De Belie N: “A chitosan based ph-responsive hydrogel for encapsulation of bacteria for self-sealing concrete”. Cement and Concrete Composites, V. 93, 2018, pp. 309-322. doi:10.1016/j.cemconcomp.2018.08.007.10.1016/j.cemconcomp.2018.08.007Search in Google Scholar

33. Wiboonluk P, Jirapa I, Pitcha J & Suched L: “Evaluation of microencapsulation techniques for micp bacterial spores applied in self-healing concrete”. Scientific Reports, V. 9, No. 1, 2019, pp. 1-10. doi:10.1038/s41598-019-49002-6.10.1038/s41598-019-49002-6671376031462752Search in Google Scholar

34. Shahid S, Aslam M, Ali S, Zameer M & Faisal M: “Self-healing of cracks in concrete using bacillus strains encapsulated in sodium alginate beads”. Chemistryselect, V. 5, No. 1, 2020, pp. 312-323. doi:10.1002/slct.201902206.10.1002/slct.201902206Search in Google Scholar

35. Palin D, Wiktor V & Jonkers H M: “A bacteria-based self-healing cementitious composite for application in low-temperature marine environments”. (2017). Biomimetics, V. 2, No. 4, 2017, p. 13. doi:10.3390/biomimetics2030013.10.3390/biomimetics2030013635268231105176Search in Google Scholar

36. Hosseini Balam N, Mostofinejad D & Eftekhar M: “Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete”. Construction and Building Materials, V. 145, 2017, pp. 107-116. doi:10.1016/j.conbuildmat.2017.04.003.10.1016/j.conbuildmat.2017.04.003Search in Google Scholar

37. Xu J, Wang X & Wang B: “Biochemical process of ureolysis-based microbial caco3 precipitation and its application in self-healing concrete”. Applied Microbiology and Biotechnology, V. 102, No. 7, 2018, pp. 3121-3132. doi:10.1007/s00253-018-8779-x.10.1007/s00253-018-8779-x29455387Search in Google Scholar

38. Wang J, De Belie N & Verstraete W: “Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete”. Journal of Industrial Microbiology & Biotechnology, V 39, No. 4, 2012, pp. 567-77. doi:10.1007/s10295-011-1037-1.10.1007/s10295-011-1037-121927907Search in Google Scholar

39. Chen H, Qian C & Huang H: “Self-healing cementitious materials based on bacteria and nutrients immobilized respectively”. Construction and Building Materials, V. 126, 2016, pp. 297-303. doi:10.1016/j.conbuildmat.2016.09.023.10.1016/j.conbuildmat.2016.09.023Search in Google Scholar

40. Xu J & Yao W: “Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent”. Cement and Concrete Research, V. 64, 2014, pp. 1-10. doi:10.1016/j.cemconres.2014.06.003.10.1016/j.cemconres.2014.06.003Search in Google Scholar

41. Seifan M, Ebrahiminezhad A, Ghasemi Y & Berenjian A: “Microbial calcium carbonate precipitation with high affinity to fill the concrete pore space: Nanobiotechnological approach”. Bioprocess and Biosystems Engineering, V. 42, No. 1, 2019, pp. 37-46. doi:10.1007/s00449-018-2011-3.10.1007/s00449-018-2011-330229327Search in Google Scholar

42. Seifan M, Sarmah A, Ebrahiminezhad A & Ghasemi Y: “Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles”. Applied Microbiology and Biotechnology, 102(5), V. 102, No. 5, 2018, pp. 2167-2178. doi:10.1007/s00253-018-8782-2.10.1007/s00253-018-8782-229380030Search in Google Scholar

43. Jadhav U, Lahoti M, Chen Z, Qiu J, Cao B & Yang E: “Viability of bacterial spores and crack healing in bacteria-containing geopolymer”. Construction and Building Materials, V. 169, 2018, pp. 716-723. doi:10.1016/j.conbuildmat.2018.03.039.10.1016/j.conbuildmat.2018.03.039Search in Google Scholar

44. Jonkers H, Thijssen A, Muyzer G, Copuroglu O & Schlangen E: “Application of bacteria as self-healing agent for the development of sustainable concrete”. Ecological Engineering, 36(2), V 36, No. 2, 2010, pp. 230-235. doi:10.1016/j.ecoleng.2008.12.036.10.1016/j.ecoleng.2008.12.036Search in Google Scholar

45. Liu F, Li J & Zhang X: “Bioplastic production from wastewater sludge and application”. Proceedings, IOP Conference Series: Earth and Environmental Science, 344, 2019, 012071.10.1088/1755-1315/344/1/012071Search in Google Scholar

46. Arikan E B, & Ozsoy H D: “A Review: Investigation of Bioplastics”. Journal of Civil Engineering and Architecture, V. 9, No. 2, 2015. 02/28/2015.10.17265/1934-7359/2015.02.007Search in Google Scholar

47. Hornbostel K & Geiker M R: “Influence of cracking on reinforcement corrosion”. Proceedings, Nordic Workshop on “Crack width calculations methods for large concrete structures”. (M Engen & R Tan, Editors). Oslo, Norway, 2019.Search in Google Scholar

48. Hager M D, van der Swaag S & Schubert U S (Ed): “Self-healing materials”. Springer International Publishing, 2016. Springer. https://doi.org/10.1007/12_2015_332.10.1007/12_2015_332Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo