1. bookVolume 62 (2020): Edition 1 (June 2020)
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Activation Energy for the Concrete Maturity Model – Part 1: Compressive Strength Tests at Different Curing Temperatures

Publié en ligne: 09 Jul 2020
Volume & Edition: Volume 62 (2020) - Edition 1 (June 2020)
Pages: 87 - 106
Reçu: 19 Feb 2020
Accepté: 22 Jun 2020
Détails du magazine
License
Format
Magazine
eISSN
2545-2819
Première parution
30 Sep 2018
Périodicité
2 fois par an
Langues
Anglais

1. Freiesleben Hansen P & Pedersen E J: “Måleinstrument til control af betons hærdning” “Maturity Computer for Controlled Curing and Hardening of Concrete”). Nordisk Betong, No. 1, 1977, pp. 21-25. (In Danish).Search in Google Scholar

2. CEN: “Eurocode 2 Design of concrete structures, Part 1-1”, EN 1992-1-1, 2004.Search in Google Scholar

3. Federation International du Beton: “Model Code 2010”. Fib Bulletin No. 65, Lausanne, Switzerland, 2012, 311 pp.Search in Google Scholar

4. Nielsen C V: “Modeling the heat development of concrete associated with cement hydration”. Special Publication ACI SP-241, Concrete heat development: Monitoring, prediction and management, American Concrete Institute, Farmington Hills, MI, USA, 2007, pp. 95-109.Search in Google Scholar

5. Carino N J: “The maturity method: Theory and Applications”. Cement, Concrete and Aggregates, CCAGDP, Vol. 6, No. 2, 1984, pp. 61-73.10.1520/CCA10358JSearch in Google Scholar

6. Jonasson J E, Groth P & Hedlund H: “Modelling of temperature and moisture field in concrete to study early age movements as a basis for stress analysis”. Proceedings, International RILEM Symp.: Thermal Cracking in Concrete at Early Ages, RILEM Proceedings 25, E&FN Spon, pp. 45-52.Search in Google Scholar

7. Fjellström P, Jonasson J E, Emborg M & Hedlund H: “Model for concrete strength development including strength reduction at elevated temperatures”. Nordic Concrete Research, No. 45, 2012, pp. 25-44.Search in Google Scholar

8. Kanstad T, Hammer T A, Bjøntegaard Ø & Sellevold E J: “Mechanical properties of young concrete: Part I Experimental results related to test methods and temperature effects”. Materials and Structures, Vol. 36, 2003, pp. 218-225.10.1007/BF02479614Search in Google Scholar

9. Schindler A K: “Effect of temperature on hydration of cementitious materials”. ACI Materials Journal, Vol. 101, No. 1, 2004, pp. 72-81.10.14359/12990Search in Google Scholar

10. Nielsen C V: “Early-age requirements for concrete for civil structures”. Proceedings, fib Congress: Improving Performance of Concrete Structures, Mumbai, India, 2014.Search in Google Scholar

11. Kaasgaard M & Pade C: “Influence of curing temperature and maturity on chloride permeability of concrete containing fly ash or slag”. Nordic Concrete Research, No. 48, 2013, pp. 1-11.Search in Google Scholar

12. Aarre T & Kaasgaard M: “Influence of curing temperature on strength development of concrete”. Key Engineering Materials, Vol. 711, 2016, 118-125.10.4028/www.scientific.net/KEM.711.118Search in Google Scholar

13. TI-B 103, “Prøvningsmetode Aktiveringsenergi i den relative hastighedsfunktion” (“Test method for activation energy for concrete”). Danish Technological Institute, Taastrup, Denmark, 1994. (In Danish).Search in Google Scholar

14. Kjellsen K O & Detwiler R J: “Later-age strength prediction by a modified maturity method”. ACI Materials Journal, Vol. 90, No. 3, 1993, pp. 220-227.10.14359/3873Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo