Accès libre

Glucose Concentration Monitoring Using Microstrip Spurline Sensor

À propos de cet article

Citez

Majeed, A., El-Sayed, A. A., Khoja, T., Alshamsan, R., Millett, C., Rawaf, S. (2014). Diabetes in the Middle-East and North Africa: An update. Diabetes Research and Clinical Practice, 103 (2), 218-222. https://doi.org/10.1016/j.diabres.2013.11.008 Search in Google Scholar

Segar, M. W., Patel, K. V., Vaduganathan, M., Caughey, M. C., Butler, J., Fonarow, G. C., Grodin, J. L., McGuire, D. K., Pandey, A. (2020). Association of long-term change and variability in glycemia with risk of incident heart failure among patients with type 2 diabetes: A secondary analysis of the ACCORD trial. Diabetes Care, 43 (8), 1920-1928. https://doi.org/10.2337/dc19-2541 Search in Google Scholar

Shokrekhodaei, M., Quinones, S. (2020). Review of non-invasive glucose sensing techniques: Optical, electrical and breath acetone. Sensors (Basel), 20 (5), 1251. https://doi.org/10.3390%2Fs20051251 Search in Google Scholar

Uwadaira, Y., Ikehata, A., Momose, A., Miura, M. (2016). Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomedical Optics Express, 7 (7), 2729-2737. https://doi.org/10.1364%2FBOE.7.002729 Search in Google Scholar

Kino, S., Omori, S., Katagiri, T., Matsuura, Y. (2016). Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism. Biomedical Optics Express, 7 (2), 701-708. https://doi.org/10.1364%2FBOE.7.000701 Search in Google Scholar

Sim, J. Y., Ahn, C. G., Jeong, E. J., Kim, B. K. (2018). In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Scientific Reports, 8 (1), 1059. https://doi.org/10.1038/s41598-018-19340-y Search in Google Scholar

Zheng, Y., Zhu, X., Wang, Z., Hou, Z., Gao, F., Nie, R., Cui, X., She, J., Peng, B. (2017). Noninvasive blood glucose detection using a miniature wearable raman spectroscopy system. Chinese Optics Letters, 15, 083001. https://opg.optica.org/col/viewmedia.cfm?uri=col-15-8-083001&seq=0 Search in Google Scholar

Tiangco, C., Fon, D., Sardesai, N., Kostov, Y., Sevilla, F. III., Rao, G., Tolosa, L. (2017). Fiber optic biosensor for transdermal glucose based on the glucose binding protein. Sensors and Actuators B: Chemical, 242, 569-576. https://doi.org/10.1016/j.snb.2016.11.077 Search in Google Scholar

Lan, Y. T., Kuang, Y. P., Zhou, L. P., Wu, G. Y., Gu, P. C., Wei, H. J., Chen, K. (2017). Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Physics Letters, 14, 035603. http://dx.doi.org/10.1088/1612-202X/aa58c0 Search in Google Scholar

Chen, H., Chen, X., Ma, S., Wu, X., Yang, W., Zhang, W., Li, X. (2018). Quantify glucose level in freshly diabetic’s blood by terahertz time-domain spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 39, 399-408. https://doi.org/10.1007/s10762-017-0462-2 Search in Google Scholar

Omer, A. E., Shaker, G., Safavi-Naeini, S., Kokabi, H., Alquié, G., Deshours, F., Shubair, R. M. (2020). Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: Novel design utilizing a four-cell CSRR hexagonal configuration. Scientific Reports, 10 (1), 15200. https://doi.org/10.1038/s41598-020-72114-3 Search in Google Scholar

Martin, F., Velez, P., Munoz-Enano, J., Su, L. (2023). Introduction to planar microwave sensors. In Planar Microwave Sensors. Wiley-IEEE Press, 1-64. https://doi.org/10.1002/9781119811060.ch1 Search in Google Scholar

Gonzales, W. V., Mobashsher, A. T., Abbosh, A. (2019). The progress of glucose monitoring-a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors (Basel), 19 (4), 800. https://doi.org/10.3390/s19040800 Search in Google Scholar

Turgul, V., Kale, I. (2017). Simulating the effects of skin thickness and fingerprints to highlight problems with mon-invasive RF blood glucose sensing from fingertips. IEEE Sensors Journal, 17, 7553-7560. https://doi.org/10.1109/JSEN.2017.2757083 Search in Google Scholar

Hofmann, M., Fischer, G., Weigel, R., Kissinger, D. (2013). Microwave-based noninvasive concentration measurements for biomedical applications. IEEE Transactions on Microwave Theory and Techniques, 61, 2195-2204. https://doi.org/10.1109/TMTT.2013.2250516 Search in Google Scholar

Yilmaz, T., Foster, R., Hao, Y. (2019). Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels. Diagnostics, 9 (1), 6. https://doi.org/10.3390/diagnostics9010006 Search in Google Scholar

Saha, S., Cano-Garcia, H., Sotiriou, I., Lipscombe, O., Gouzouasis, I., Koutsoupidou, M., Palikaras, G., Mackenzie, R., Reeve, T., Kosmas, P., Kallos, E. (2017). A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas. Scientific Reports, 7 (1), 6855. https://doi.org/10.1038/s41598-017-06926-1 Search in Google Scholar

Saeedi, S., Chammani, S., Fischer, G. (2022). Feasibility study of glucose concentration measurement of aqueous solution using time domain reflected signals. Sensors (Basel), 22 (3), 1174. https://doi.org/10.3390/s22031174 Search in Google Scholar

Mohamed, A. Z., Amar, R., Cherif, H., Hichem, A. (2021). Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sensors and Actuators A: Physical, 321, 112601. https://doi.org/10.1016/j.sna.2021.112601 Search in Google Scholar

Saeed, K., Shafique, M. F., Byrne, M. B., Hunter, I. C. (2012). Planar microwave sensors for complex permittivity characterization of materials and their applications. In Applied Measurement Systems. IntechOpen, 319-350. https://doi.org/10.5772/36302 Search in Google Scholar

Alahnomi, R. A., Zakaria, Z., Yussof, Z. M., Althuwayb, A. A., Alhegazi, A., Alsariera, H., Rahman, N. A. (2021). Review of recent microwave planar resonator-based sensors: Techniques of complex permittivity extraction, applications, open challenges and future research directions. Sensors (Basel), 21 (7), 2267. https://doi.org/10.3390/s21072267 Search in Google Scholar

Morales-Lovera, H. N., Olvera-Cervantes, J. L., Perez-Ramos, A. E., Corona-Chavez, A., Saavedra, C. E. (2022). Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques. Scientific Reports, 12 (1), 2205. https://doi.org/10.1038/s41598-022-06259-8 Search in Google Scholar

Jang, C., Park, J. K., Lee, H. J., Yun, G. H., Yook, J. G. (2020). Non-invasive fluidic glucose detection based on dual microwave complementary split ring resonators with a switching circuit for environmental effect elimination. IEEE Sensors Journal, 20, 8520-8527. https://doi.org/10.1109/JSEN.2020.2984779 Search in Google Scholar

Kumar, A., Wang, C., Meng, F. Y., Zhou, Z. L., Zhao, M., Yan, G. F., Kim, E. S., Kim, N. Y. (2020). High-sensitivity, quantified, linear and mediator-free resonator-based microwave biosensor for glucose detection. Sensors (Basel), 20 (14), 4024. https://doi.org/10.3390/s20144024 Search in Google Scholar

Satish, S. K., Anand, S. (2021). Demonstration of microstrip sensor for the feasibility study of noninvasive blood-glucose sensing. Mapan - Journal of Metrology Society of India, 6 (1), 193-199. https://doi.org/10.1007/s12647-020-00396-z Search in Google Scholar

Juan, C. G., Bronchalo, E., Potelon, B., Quendo, C., Muñoz, V. F., Ferrández-Vicente, J. M., Sabater-Navarro, J. M. (2023). On the selectivity of planar microwave glucose sensors with multicomponent solutions. Electronics, 12 (1), 191. https://doi.org/10.3390/electronics12010191 Search in Google Scholar

Nakamura, M., Tajima, T., Seyama, M. (2022). Broadband dielectric spectroscopy for quantitative analysis of glucose and albumin in multicomponent aqueous solution. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 6 (1), 86-93. https://doi.org/10.1109/JERM.2021.3096150 Search in Google Scholar

Bakam Nguenouho, O. S., Chevalier, A., Potelon, J., Benedicto, J., Quendo, C. (2022). Dielectric characterization and modelling of aqueous solutions involving sodium chloride and sucrose and application to the design of a bi-parameter RF-sensor. Scientific Reports, 12, 7209. https://doi.org/10.1038/s41598-022-11355-w Search in Google Scholar

Juan, C. G., Potelon, B., Quendo, C., García-Martínez, H., Ávila-Navarro, E., Bronchalo, E., Sabater-Navarro, J. M. (2021). Study of Qᵤ-based resonant microwave sensors and design of 3-D-printed devices dedicated to glucose monitoring. IEEE Transactions on Instrumentation and Measurement, 70, 1-16. https://doi.org/10.1109/TIM.2021.3122525 Search in Google Scholar

Govind, G., Akhtar, M. J. (2020). Design of an ELC resonator-based reusable RF microfluidic sensor for blood glucose estimation. Scientific Reports, 10, 18842. https://doi.org/10.1038/s41598-020-75716-z Search in Google Scholar

Juan, C. G., Potelon, B., Quendo, C., Bronchalo, E. (2021). Microwave planar resonant solutions for glucose concentration sensing: A systematic review. Applied Sciences, 11, 7018. https://doi.org/10.3390/app11157018 Search in Google Scholar

Turgul, V., Kale, I. (2018). Permittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing. Sensors and Actuators A: Physical, 277, 65-72. https://doi.org/10.1016/j.sna.2018.03.041 Search in Google Scholar

Odabashyan, L., Babajanyan, A., Baghdasaryan, Z., Kim, S., Kim, J., Friedman, B., Lee, J. H., Lee, K. (2019). Real-time noninvasive measurement of glucose concentration using a modified hilbert shaped microwave sensor. Sensors (Basel), 19 (24), 5525. https://doi.org/10.3390/s19245525 Search in Google Scholar

Omkar, Yu, W., Huang, S. Y. (2018). T-shaped patterned microstrip line for moninvasive continuous glucose sensing. IEEE Microwave and Wireless Components Letters, 28 (10), 942-944. https://doi.org/10.1109/LMWC.2018.2861565 Search in Google Scholar

Gharbi, M. E., Fernández-García, R., Gil, I. (2021). Textile antenna-sensor for in vitro diagnostics of diabetes. Electronics, 10, 1570. https://doi.org/10.3390/electronics10131570 Search in Google Scholar

Omer, A. E., Shaker, G., Safavi-Naeini, S., Ngo, K., Shubair, R. M., Alquie, G., Deshours, F., Kokabi, H. (2021). Multiple-cell microfluidic dielectric resonator for liquid sensing applications. IEEE Sensors Journal, 5, 6094-6104. https://doi.org/10.1109/JSEN.2020.3041700 Search in Google Scholar

Hanna, J., Tawk, Y., Azar, S., Ramadan, A. H., Dia, B., Shamieh, E., Zoghbi, S., Kanj, R., Costantine, J., Eid, A. A. (2022). Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring. Scientific Reports, 12 (1), 14885. https://doi.org/10.1038/s41598-022-19251-z Search in Google Scholar

Huang, S. Y., Omkar, Yoshida, Y., Garcia Inda, A. J., Xavier, C. X., Mu, W. C., Meng, Y. S. (2019). Microstrip line-based glucose sensor for noninvasive continuous monitoring using the main field for sensing and multivariable crosschecking. IEEE Sensors Journal, 19 (2), 535-547. https://doi.org/10.1109/JSEN.2018.2877691 Search in Google Scholar

Zidane, M. A., Rouane, A., Hamouda, C., Amar, H. (2021). Hyper-sensitive microwave sensor based on split ring resonator (SRR) for glucose measurement in water. Sensors and Actuator A: Physical, 321, 112601. https://doi.org/10.1016/j.sna.2021.112601 Search in Google Scholar

Baghelani, M., Abbasi, Z., Daneshmand, M., Light, P. E. (2020). Non-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators. Scientific Reports, 10 (1), 12980. https://doi.org/10.1038/s41598-020-69547-1 Search in Google Scholar

Mohammadi, S., Wiltshire, B., Jain, M. C., Nadaraja, A.V., Clements, A., Golovin, K., Roberts, D.J., Johnson, T., Foulds, I., Zarifi, M.H., (2020). Gold coplanar waveguide resonator integrated with a microfluidic channel for aqueous dielectric detection. IEEE Sensors Journal, 20 (17), 9825-9833. https://doi.org/10.1109/JSEN.2020.2991349 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing