Accès libre

Attitude Control and Parameter Optimization: A Study on Hubble Space Telescope

À propos de cet article

Citez

Lohani, S., Joshi, R. (2020). Satellite network security. In 2020 International Conference on Emerging Trends in Communication, Control and Computing (ICONC3). IEEE, 1-5. https://doi.org/10.1109/ICONC345789.2020.9117553 Search in Google Scholar

Shiga, D. (2010). Happy birthday Hubble: The telescope that almost wasn’t. New Scientist, 206 (2756), 26-27. https://doi.org/10.1016/S0262-4079(10)60938-4 Search in Google Scholar

Dougherty, H., Rodoni, C., Tompetrini, K., Nakashima, A. (1983). Space telescope pointing control. IFAC Proceedings Volumes, 16 (11), 15-24. https://doi.org/10.1016/S1474-6670(17)62184-0 Search in Google Scholar

Nurre, G. S., Sharkey, J. P., Nelson, J. D., Bradley, A. J. (1995). Preservicing mission, on-orbit modifications to Hubble Space Telescope pointing control system. Journal of Guidance Control Dynamics, 18 (2), 222–229. https://doi.org/10.2514/3.21373 Search in Google Scholar

Borase, R. P., Maghade, D., Sondkar, S., Pawar, S. (2021). A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9 (2), 818-827. https://doi.org/10.1007/s40435-020-00665-4 Search in Google Scholar

Mohammed, L., Ahmed, M. M. (2014). Spacecraft pitch pid controller tunning using Ziegler Nichols method. IOSR Journal of Electrical and Electronics Engineering, 9 (6), 62-67. https://www.iosrjournals.org/iosr-jeee/Papers/Vol9-issue6/Version-1/I09616267.pdf Search in Google Scholar

Joseph, E. A., Olaiya, O. O. (2017). Cohen-Coon PID tuning method: A better option to Ziegler-Nichols PID tuning method. International Journal of Recent Engineering Research and Development (IJRERD), 2 (11), 141-145. http://www.ijrerd.com/papers/v2-i11/29-IJRERD-B576.pdf Search in Google Scholar

Wilson, D. I. (2005). Relay-based PID tuning. Automation and Control, 10-12. Search in Google Scholar

Gawthrop, P. (1986). Self-tuning PID controllers: Algorithms and implementation. IEEE Transactions on Automatic Control, 31 (3), 201-209. https://doi.org/10.1109/TAC.1986.1104241 Search in Google Scholar

Park, D., Yu, H., Xuan-Mung, N., Lee, J., Hong, S. K. (2019). Multicopter pid attitude controller gain autotuning through reinforcement learning neural networks. In Proceedings of the 2019 2nd International Conference on Control and Robot Technology. New York, US: Association for Computing Machinery, 80-84. https://doi.org/10.1145/3387304.3387327 Search in Google Scholar

Wang, Y., Xiong, J., Lu, Z., Zhang, Y. (2019). The optimization of spacecraft attitude control parameters based on improved particle swarm algorithm. In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, 1691-1694. https://doi.org/10.1109/IMCEC46724.2019.8983855 Search in Google Scholar

Jia, Y., Yang, X. (2016). Optimization of control parameters based on genetic algorithms for spacecraft attitude tracking with input constraints. Neurocomputing, 177, 334-341. https://doi.org/10.1016/j.neucom.2015.11.022 Search in Google Scholar

Khoshrooz, A. R., Vahid, D. M., Mirshams, M., Homaeinezhad, M. R., Ahadi, A. H. (2012). Novel method on using evolutionary algorithms for pd optimal tuning. Applied Mechanics and Materials, 110-116, 4977-4984. https://doi.org/10.4028/www.scientific.net/AMM.110-116.4977 Search in Google Scholar

Daw, M. S., Zayed, A. S., Allafi, N. I., Husain, R. A. (2017). Genetic algorithm based PID controller for attitude control of geostationary satellite. In International Conference & Exhibition for Geospatial Technologies – Libya GeoTec 2, 318-330. https://www.lrsgis.org.ly/libyageotec2/ar/paper/34-21-B5-Eng-rev.pdf Search in Google Scholar

Sidi, M. J. (1997). Spacecraft Dynamics and Control: A Practical Engineering Approach, Cambridge Aerospace Series No. 7. Cambridge University Press, ISBN 978-0521550727. Search in Google Scholar

Blanke, M., Larsen, M. B. (2010). Satellite Dynamics and Control in a Quaternion Formulation (2nd edition). Technical Report, Technical University of Denmark, Department of Electrical Engineering. https://backend.orbit.dtu.dk/ws/portalfiles/portal/98594729/Satdyn_mb_2010f.pdf Search in Google Scholar

Yang, Y. (2012). Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control, 36 (2), 198-219. https://doi.org/10.1016/j.arcontrol.2012.09.003 Search in Google Scholar

Hasha, M. D. (1987). Passive isolation/damping system for the Hubble Space Telescope reaction wheels. In NASA-Lyndon B. Johnson Space Center, The 21st Aerospace Mechanisms Symposium, 211-226. https://ntrs.nasa.gov/citations/19870020440 Search in Google Scholar

Wertz, J. R. (ed.) (1978). Spacecraft Attitude Determination and Control (Astrophysics and Space Science Library, 73). ISBN 978-9027712042. Search in Google Scholar

Shahgholian, G., Shafaghi, P. (2010). State space modeling and eigenvalue analysis of the permanent magnet DC motor drive system. In 2010 2nd International Conference on Electronic Computer Technology. IEEE, 63-67. https://doi.org/10.1109/ICECTECH.2010.5479987 Search in Google Scholar

Thienel, J. K., Sanner, R. M. (2007). Hubble Space Telescope angular velocity estimation during the robotic servicing mission. Journal of Guidance, Control, and Dynamics, 30 (1), 29-34. https://doi.org/10.2514/1.20591 Search in Google Scholar

De Guia, N. (2012). Investigating various propulsion systems for an external attachment for a controlled manual de-orbit of the Hubble Space Telescope. https://digitalcommons.calpoly.edu/aerosp/63/ Search in Google Scholar

Lee, D., Springmann, J., Spangelo, S., Cutler, J. (2011). Satellite dynamics simulator development using lie group variational integrator. In AIAA Modeling and Simulation Technologies Conference. AIAA 2011-6430. https://doi.org/10.2514/6.2011-6430 Search in Google Scholar

Hur-Diaz, S., Wirzburger, J., Smith, D. (2008). Three axis control of the Hubble Space Telescope using two reaction wheels and magnetic torquer bars for science observations. In F. Landis Markley Astronautics Symposium. https://ntrs.nasa.gov/citations/20080023343 Search in Google Scholar

Foster, C. L., Tinker, M. L., Nurre, G. S., Till, W. A. (1995). Solar-array-induced disturbance of the Hubble Space Telescope pointing system. Journal of Spacecraft and Rockets, 32 (4), 634-644. https://doi.org/10.2514/3.26664 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing