Accès libre

The Influence of the Movement Method on the Results of Machine Tool Positioning Accuracy Analysis

À propos de cet article

Citez

Ibrahim, S. M., Saedon, J., Radzi, A., Omar, R. (2019). Improvement of positional accuracy of developed dicing machine. International Journal of Mechanical Engineering and Robotics Research, 8 (5), 680-684. http://dx.doi.org/10.18178/ijmerr.8.5.680-684 Search in Google Scholar

Aguado, S., Pérez, P., Albajez, J. A., Velázquez, J., Santolaria, J. (2022). Inaccuracy of machine tools due to verification conditions. Measurement, 188, 110629. https://doi.org/10.1016/j.measurement.2021.110629 Search in Google Scholar

Kureková, E., Halaj, M., Palenčár, R.. (2011). The positional deviation in two numerically controlled axes. In Measurement 2011: Proceedings of the 8th International Conference. Slovakia: IMS SAS, 88-91. ISBN 9788096967247. Search in Google Scholar

ISO. (2014). Test code for machine tools – Part 2: Determination of accuracy and repeatability of positioning of numerically controlled axes. Standard 230-2:2014. Search in Google Scholar

Japanese Standards Association (JSA). (1980). Тest code for performance and accuracy of numerically controlled machine tools. Standard JIS B 6330. Search in Google Scholar

China National Standards. (2016). Test code for machine tools -- Part 2: Determination of accuracy and repeatability positioning numerically controlled axes. Standard GB/T 17421.2-2016. Search in Google Scholar

АSМЕ. (2005). Methods for performance evaluation of computer numerically controlled machining centers. Standard B5.54 - 2005. Search in Google Scholar

Deutsches Institut fur Normung E.V. (DIN). (1977). Statistical testing of the operational and positional accuracy of machine tools. Standard VDI/DGQ 3441. Search in Google Scholar

Sokolov, V., Basalaev, K. (2014). Laser measurements based for volumetric accuracy improvement of multi-axis systems. Physics Procedia, 56, 1297-1304. https://doi.org/10.1016/j.phpro.2014.08.054 Search in Google Scholar

Aguado, S., Santolaria, J., Samper, D., Aguilar, J. J. (2013). Influence of measurement noise and laser arrangement on measurement uncertainty of laser tracker multilateration in machine tool volumetric verification. Precision Engineering, 37, 929-943. https://doi.org/10.1016/j.precisioneng.2013.03.006 Search in Google Scholar

Linares, J.-M., Chaves-Jacob, J., Schwenke, H., Longstaff, A., Fletcher, S., Flore, J., Uhlmann, E., Wintering, J. (2014). Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer. Precision Engineering, 38, 578-588. https://doi.org/10.1016/j.precisioneng.2014.02.008 Search in Google Scholar

López de Lacalle, L. N., Lamikiz, A. (eds.). (2008). Machine Tools for High Performance Machining. Springer. https://doi.org/10.1007/978-1-84800-380-4 Search in Google Scholar

Mekid, S. (ed.) (2008). Introduction to Precision Machine Design and Error Assessment. CRC Press. ISBN 978-0849378867. Search in Google Scholar

Mullany, B. (2007). Evaluation and comparison of the different standards used to define the positional accuracy and repeatability of numerically controlled machining center axes. Ph.D. Dissertation, University of North Carolina, Charlotte, US. Search in Google Scholar

Artimon, F. P. G., Stochioiu, C., Popan, G. (2021). Thermal influence on positioning error and position repeatability at a machining center axes. UPB Scientific Bulletin, Series D: Mechanical Engineering, 83 (2), 181-188. ISSN 1454-2358. Search in Google Scholar

Weck, M., Brecher, C. (2013). Werkzeugmaschinen 5: Messtechnische Untersuchung und Beurteilung, dynamische Stabilität. Springer. https://doi.org/10.1007/978-3-540-32951-0 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing