1. bookVolume 22 (2022): Edition 5 (October 2022)
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais
Accès libre

The Collection Efficiency of a Large Area PMT Based on the Coated MCPs

Publié en ligne: 05 Aug 2022
Volume & Edition: Volume 22 (2022) - Edition 5 (October 2022)
Pages: 241 - 245
Reçu: 11 Mar 2022
Accepté: 27 Jun 2022
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais

[1] Brugière, T. (2017). The Jiangmen underground neutrino observatory experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 845, 326-329. https://doi.org/10.1016/j.nima.2016.05.111 Search in Google Scholar

[2] Li, Y. (2014). Overview of the Jiangmen underground neutrino observatory (JUNO). International Journal of Modern Physics: Conference Series, 31, 1460300. https://doi.org/10.1142/S2010194514603007 Search in Google Scholar

[3] He, M., JUNO collaboration. (2015). Jiangmen underground neutrino observatory. Nuclear and Particle Physics Proceedings, 265-266, 111-113. https://doi.org/10.1016/j.nuclphysbps.2015.06.027 Search in Google Scholar

[4] Zhang, Y., Hui, J., Liu, J., Xiao, M., Zhang, T., Zhang, F., Meng, Y., Xu, D., Ye, Z. (2021). Cable loop calibration system for Jiangmen underground neutrino observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 988, 164867. https://doi.org/10.1016/j.nima.2020.164867 Search in Google Scholar

[5] Miramonti, L. (2020). Status and the perspectives of the Jiangmen Underground Neutrino Observatory (JUNO). Modern Physics Letters A, 35 (09), 2030004. https://doi.org/10.1142/S0217732320300049 Search in Google Scholar

[6] Cerna, C. (2020). The Jiangmen Underground Neutrino Observatory (JUNO). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 958, 162183. https://doi.org/10.1016/j.nima.2019.05.024 Search in Google Scholar

[7] Leitner, R. (2017). Recent results of Daya Bay reactor neutrino experiment. Nuclear and Particle Physics Proceedings, 285-286, 32-37. https://doi.org/10.1016/j.nuclphysbps.2017.03.007 Search in Google Scholar

[8] An, F., Bai, J., Balantekin, A., et al. (2012). Observation of electron-antineutrino disappearance at Daya Bay. Physical Review Letters, 108, 171803. https://doi.org/10.1103/PhysRevLett.108.17180322680853 Search in Google Scholar

[9] Cao, J. (2014). Daya Bay and Jiangmen underground neutrino observatory (JUNO) neutrino experiments. Scientia Sinica Physica, Mechanica & Astronomica, 44 (10), 1025-1040. https://doi.org/10.1360/SSPMA2014-00174 Search in Google Scholar

[10] Wang, Y., Qian, S., Zhao, T., et al. (2012). A new design of large area MCP-PMT for the next generation neutrino experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 695, 113-117. https://doi.org/10.1016/j.nima.2011.12.085 Search in Google Scholar

[11] Qian, S., Liu, S. (2016). The R&D of 20 inch MCP-PMTs in China. In 38th International Conference on High Energy Physics. http://indico.cern.ch/event/432527/contributions/1071941/ Search in Google Scholar

[12] Hamamatsu Photonics K.K. (2006). Photomultiplier Tubes: Basics and Applications. Third edition. Search in Google Scholar

[13] Bronshtein, I., Denisov, S. (1967). Secondary electron emission of aluminium and nickel for obliquely incident primary electrons. Soviet Physics-Solid State, 9, 731-732. Search in Google Scholar

[14] Chen, L., Tian, J., Liu, C., et al. (2016). Optimization of the electron collection efficiency of a large area MCP-PMT for the JUNO experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 827, 124-130. https://doi.org/10.1016/j.nima.2016.04.100 Search in Google Scholar

[15] Chen, L., Tian, J., Zhao, T., Liu, C., Liu, H., Wei, Y., Sai, X., Chen, P., Wang, X., Lu, Y., Hui, D. (2016). Simulation of the electron collection efficiency of a PMT based on the MCP coated with high secondary yield material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 94-98. https://doi.org/10.1016/j.nima.2016.08.034 Search in Google Scholar

[16] CST Studio Suite. (2014). Computer Simulation Technology. https://www.cst.com Search in Google Scholar

[17] Chirikov-Zorin, I., Fedorko, I., Menzione, A., Pikna, M., Sýkora, I., Tokár, S. (2001). Method for precise analysis of the metal package photomultiplier single photoelectron spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 456 (3), 310-324. https://doi.org/10.1016/S0168-9002(00)00593-3 Search in Google Scholar

[18] Xia, J., Qian, S., Wang, W., et al. (2015). A performance evaluation system for photomultiplier tubes. Journal of Instrumentation, 10, 03023. https://doi.org/10.1088/1748-0221/10/03/P03023 Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo