Accès libre

On Modelling of Maximum Electromagnetic Field in Electrically Large Enclosures

À propos de cet article

Citez

[1] Hill, D.A. (1998). Plane wave integral representation for fields in reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 40 (3), 209-217. https://doi.org/10.1109/15.709418 Search in Google Scholar

[2] Ladbury, J., Koepke, G., Camell, D. (1999). Evaluation of the NASA langley research center mode-stirred chamber facility. NIST Technical Note 1508.10.6028/NIST.TN.1508 Search in Google Scholar

[3] Orjubin, G. (2007). Maximum field inside a reverberation chamber modeled by the generalized extreme value distribution. IEEE Transactions on Electromagnetic Compatibility, 49 (1), 104-113. https://doi.org/10.1109/TEMC.2006.888172 Search in Google Scholar

[4] Gifuni, A. (2011). Deterministic approach to estimate the upper bound of the electric field in a reverberation chamber. IEEE Transactions on Electromagnetic Compatibility, 53 (3), 570-578. https://doi.org/10.1109/TEMC.2010.2102359 Search in Google Scholar

[5] Hu, P., Zhou, Z., Zhou, X., Sheng, M. (2020). Maximum field strength within reverberation chamber: A comparison study. In 6th Global Electromagnetic Compatibility Conference (GEMCCON). IEEE. https://doi.org/10.1109/GEMCCON50979.2020.9456734 Search in Google Scholar

[6] Hu, P., Zhou, X., Zhou, Z. (2020). On the modelling of maximum field distribution within reverberation chamber using the generalized extreme value theory. In IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). IEEE. https://doi.org/10.1109/NEMO49486.2020.9343522 Search in Google Scholar

[7] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, 46-48. https://doi.org/10.1007/978-1-4471-3675-0 Search in Google Scholar

[8] Gradoni, G., Arnaut, L.R. (2010). Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 52 (3), 506-515. https://doi.org/10.1109/TEMC.2010.2043107 Search in Google Scholar

[9] Nourshamsi, N., West, J.C., Hager, C.E., Bunting, C.F. (2019). Generalized extreme value distributions of fields in nested electromagnetic cavities. IEEE Transactions on Electromagnetic Compatibility, 61 (4), 1337-1344. https://doi.org/10.1109/TEMC.2019.2911927 Search in Google Scholar

[10] Tait, G.B., Slocum, M.B., Richardson, R.E. (2009). On multipath propagation in electrically-large reflective spaces. IEEE Antennas and Wireless Propagation Letters, 8, 232-235. https://doi.org/10.1109/LAWP.2009.2014572 Search in Google Scholar

[11] Tait, G.B., Richardson, R.E., Slocum, M.B., Hatfield, M.O., Rodriguez, M.J. (2011). Reverberant microwave propagation in coupled complex cavities. IEEE Transactions on Electromagnetic Compatibility, 53 (1), 229-232. https://doi.org/10.1109/TEMC.2010.2051442 Search in Google Scholar

[12] Hill, D.A. (1994). Electronic mode stirring for reverberation chambers. IEEE Transactions on Electromagnetic Compatibility, 36 (4), 294-299. https://doi.org/10.1109/15.328858 Search in Google Scholar

[13] Hu, P., Zhou, Z., Zhou, X., Li, J., Ji, J., Sheng, M. (2020). Generalized extreme value distribution based framework for shielding effectiveness evaluation of undermoded enclosures. In International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE. https://doi.org/10.1109/EMCEUROPE48519.2020.9245665 Search in Google Scholar

[14] Hu, P. (2021). Study on radiated susceptibility tests using mode-stirred reverberation chambers. Doctoral dissertation, Southeast University, Nanjing, China. Search in Google Scholar

[15] Zhou, Z., Hu, P., Zhou, X., Ji, J., Sheng, M., Li, P., Zhou, Q. (2020). Performance evaluation of oscillating wall stirrer in reverberation chamber using correlation matrix method and modes within Q-bandwidth. Transactions on Electromagnetic Compatibility, 62 (6), 2669-2678. https://doi.org/10.1109/TEMC.2020.2983981 Search in Google Scholar

[16] Hosking, J.R., Wallis, J.R. (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge University Press. https://doi.org/10.1017/CBO9780511529443 Search in Google Scholar

[17] Bekker, K.N. (2004). lmom.m. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/5874-lmom-m Search in Google Scholar

[18] Andrieu, G., Ticaud, N., Lescoat, F., Trougnou, L. (2019). Fast and accurate assessment of the “Well Stirred Condition” of a reverberation chamber from S11 measurements. IEEE Transactions on Electromagnetic Compatibility, 61 (4), 974-982. https://doi.org/10.1109/TEMC.2018.2847727 Search in Google Scholar

[19] Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons. Journal of the American Statistical Association, 69 (394), 730-737. https://doi.org/10.1080/01621459.1974.10480196 Search in Google Scholar

[20] Lemoine, C., Besnier, P., Drissi, M. (2007). Investigation of reverberation chamber measurements through high-power goodness-of-fit tests. IEEE Transactions on Electromagnetic Compatibility, 49 (4), 745-755. https://doi.org/10.1109/TEMC.2007.908290 Search in Google Scholar

[21] Romero, S.F., Gutierrez, G., Gonzalez, I. (2014). Prediction of the maximum electric field level inside a metallic cavity using a quality factor estimation. Journal of Electromagnetic Waves and Applications, 28 (12), 1468-1477. https://doi.org/10.1080/09205071.2014.929049 Search in Google Scholar

[22] Xu, Q., Chen, K., Shen, X., Li, W.H., Zhao, Y.J., Huang, Y. (2019). Comparison of the normalized maximum field strength using E-field probe and VNA methods in a reverberation chamber. IEEE Antennas and Wireless Propagation Letters, 18 (10), 2135-2139. https://doi.org/10.1109/LAWP.2019.2938833 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing