À propos de cet article

Citez

[1] Sonntag, R.E., Van Wylen, G.J., Borgnakke, C. (2008). Fundamentals of Thermodynamics. Wiley. Search in Google Scholar

[2] Lucia, U. (2015). Bioengineering thermodynamics of biological cells. Theoretical Biology and Medical Modelling, 12 (1), 1-16.10.1186/s12976-015-0024-z466612026620568 Search in Google Scholar

[3] Ram, D. (2012). Thermodynamic analysis of biological systems. Journal of Thermodynamics and Catalysis, 3 (2), e101. Search in Google Scholar

[4] Savvin, V., Korotkova, L., Shishkin, G. (2017). The use of thermodynamic approaches in assessing the state of a living system. Medical Newsletter of Vyatka, 2, 40-44. [in Russian] Search in Google Scholar

[5] Anatychuk, L., Pasyechnikova, N., Nazaretyan, R., Myrnenko, V., Kobylyanskyi, R., Gavrilyuk, N. (2015). Original device and approaches to the study of temperature distribution in various eye segments (experimental study). Journal of Ophthalmology, 58 (6), 50–53.10.31288/oftalmolzh201565053 Search in Google Scholar

[6] Mapstone, R. (1968). Determinants of corneal temperature. British Journal of Ophthalmology, 52 (10), 729–741.10.1136/bjo.52.10.7295066815686964 Search in Google Scholar

[7] Tan, J.H., Ng, E., Rajendra Acharya, U., Chee, C. (2009). Infrared thermography on ocular surface temperature: A review. Infrared Physics & Technology, 52 (4), 97–108.10.1016/j.infrared.2009.05.002 Search in Google Scholar

[8] Galassi, F., Giambene, B., Corvi, A., Falaschi, G. (2007). Evaluation of ocular surface temperature and retrobulbar haemodynamics by infrared thermography and colour Doppler imaging in patients with glaucoma. British Journal of Ophthalmology, 91 (7), 878-881.10.1136/bjo.2007.114397195565517314146 Search in Google Scholar

[9] Kochan, R., Kochan, O., Chyrka, M., Jun, S., Bykovyy, P. (2013). Approaches of voltage divider development for metrology verification of ADC. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). IEEE, Vol. 1, 70-75. Search in Google Scholar

[10] Grishchenko, T. (2018). Heat flux measurement: Theory, metrology, practice. Methods and tools for heat flux measurement. Kyiv, Ukraine. [in Russian] Search in Google Scholar

[11] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples with built-in self-testing. International Journal of Thermophysics, 37 (4), 37.10.1007/s10765-016-2044-2 Search in Google Scholar

[12] Jun, S., Kochan, O., Chunzhi, W., Kochan, R. (2015). Theoretical and experimental research of error of method of thermocouple with controlled profile of temperature field. Measurement Science Review, 15 (6), 304–312.10.1515/msr-2015-0041 Search in Google Scholar

[13] Anatychuk, L.I., Ivaschuk, O.I., Kobylianskyi, R.R., Postevka, I.D., Bodiaka, V.Y., Gushul, I.Y. (2016). Thermoelectric device for temperature and heat flux density measurement ALTEC -10008. Journal of Thermoelectricity, 1, 74-81. Search in Google Scholar

[14] Hunt, L.B. (1964). The early history of the thermocouple. Platinum Metals Review, 8 (1), 23-28. Search in Google Scholar

[15] Atherton, T. (1986). A history of Ohm’s law. Electronics and Power, 32 (6), 467-472.10.1049/ep.1986.0274 Search in Google Scholar

[16] Machin, G., Bojkovski, J., del Campo, D., Dogan, A. K., Fischer, J., Hermier, Y., Merlone, A., Nielsen, J., Peruzzi, A., Ranostaj, J., Strnad, R. (2014). A European roadmap for thermometry. International Journal of Thermophysics, 35 (3-4), 385-394.10.1007/s10765-013-1554-4 Search in Google Scholar

[17] Trisna, B.A., Suherlan, Wiriadinata, H., Fajria, M.A., Rifa’i, I.A., Tistomo, A.S., Zaid, G. (2018). Effect of electrical annealing to the inhomogeneity improvement of type-S thermocouples. Journal of Physics: Conference Series, 1065, 122001. Search in Google Scholar

[18] Kim, Y.G., Song, C.H., Gam, K.S., Yang, I. (2009). Change in inhomogeneity with temperature between 180 °C and 950 °C in base-metal thermocouples. Measurement Science and Technology, 20 (7), 075102.10.1088/0957-0233/20/7/075102 Search in Google Scholar

[19] Webster, E.S. (2014). Low-temperature drift in MIMS base-metal thermocouples. International Journal of Thermophysics, 35 (3–4), 574–595.10.1007/s10765-014-1581-9 Search in Google Scholar

[20] Klym, H., Ingram, A., Shpotyuk, O., Hadzaman, I., Solntsev, V., Hotra, O., Popov, A. I. (2016). Positron annihilation characterization of free volume in micro- and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temperature Physics, 42 (7), 601–605.10.1063/1.4959021 Search in Google Scholar

[21] Shpotyuk, O., Calvez, L., Petracovschi, E., Klym, H., Ingram, A., Demchenko, P. (2014). Thermally-induced crystallization behaviour of 80GeSe2–20Ga2Se3 glass as probed by combined X-ray diffraction and PAL spectroscopy. Journal of Alloys and Compounds, 582, 323–327.10.1016/j.jallcom.2013.07.127 Search in Google Scholar

[22] Pavlasek, P., Rybař, J., Ďuriš, S., Palenčar, J. (2019). Effects of quartz glass insulation on platinum gold thermocouples. Measurement Science Review, 19 (5), 209–212.10.2478/msr-2019-0027 Search in Google Scholar

[23] Glowacz, A. (2021). Ventilation diagnosis of angle grinder using thermal imaging. Sensors, 21 (8), 2853.10.3390/s21082853807269933919618 Search in Google Scholar

[24] Kochan, O., Sapojnyk, H., Kochan, R. (2013). Temperature field control method based on neural network. In 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS). IEEE, Vol. 1, 21-24. Search in Google Scholar

[25] Jun, S., Kochan, O., Kochan, V., Wang, C. (2016). Development and investigation of the method for compensating thermoelectric inhomogeneity error. International Journal of Thermophysics, 37 (1).10.1007/s10765-015-2025-x Search in Google Scholar

[26] Anatychuk, L., Kochan, O., Pasechnikova, N., Naumenko, V., Zadorozhnyi, O., Vikhor, L., Havryliuk, M., Kobylianskyi, R., Levkiv, M. (2021). Thermoelectric medical device for measuring heat flux from ocular surface. In 2021 13th International Conference on Measurement. IEEE, 178-181.10.23919/Measurement52780.2021.9446775 Search in Google Scholar

[27] Koziel, J., Przystupa, K. (2019). Using the FTA method to analyze the quality of an uninterruptible power supply unitreparation UPS. Przegliad Elektrotechniczny, 95 (1), 77–80.10.15199/48.2019.01.20 Search in Google Scholar

[28] Przystupa, K. (2018). Selected methods for improving power reliability. Przegląd Elektrotechniczny, 94 (12), 270-273.10.15199/48.2018.12.62 Search in Google Scholar

[29] Jun, S., Kochan, O. (2015). Common mode noise rejection in measuring channels. Instruments and Experimental Techniques, 58 (1), 86–89.10.1134/S0020441215010091 Search in Google Scholar

[30] OIML (1995). Guide to the Expression of Uncertainty in Measurement. Geneva, Switzerland. Search in Google Scholar

[31] Zhang, Y., Zhao, Y., Shen, X., Zhang, J. (2022). A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms. Applied Energy, 305, 117815.10.1016/j.apenergy.2021.117815 Search in Google Scholar

[32] Trisna, B.A., Achmadi, A., Larassati, D., Zaid, G. (2016). Fabrication and determination of an aluminium fixed point cell as a secondary standard in thermocouple calibration. Mapan, 31 (1), 57-60.10.1007/s12647-015-0159-8 Search in Google Scholar

[33] Anatychuk, L.I., Kobylianskyi, R.R. (2017). Method for manufacturing a thermoelectric microthermopile. Patent of Ukraine 117719. [in Ukrainian] Search in Google Scholar

[34] Anatychuk, L., Kobylianskyi, R., Konstantinovich, І., Kuz, R., Manik, О., Nitsovych, O., Cherkez R. (2016). Technology for manufacturing thermoelectric microthermopiles. Journal of Thermoelectricity, 6, 49-54. Search in Google Scholar

[35] Anatychuk, L., Kobylianskyi, R., Bukharayeva, N., Havrylyuk, M., Tiumentsev, V. (2019). Thermoelectric device for the measurement of temperature and heat flux from ocular surface. Patent of Ukraine 36185 [in Ukrainian] Search in Google Scholar

[36] Kim, N.R., Kim, C.Y., Kim, H., Seong, G.J., Lee, E.S. (2011). Comparison of Goldmann applanation tonometer, noncontact tonometer, and tonopen XL for intraocular pressure measurement in different types of glaucomatous, ocular hypertensive, and normal eyes. Current Eye Research, 36 (4), 295–300.10.3109/02713683.2010.54286521284505 Search in Google Scholar

[37] Anatychuk, L., Kobylianskyi, R., Konstantinovich, І., Lysko, V., Puhantseva, O., Rozver, Yu., Tiumentsev, V. (2016). Calibration bench for thermoelectric heat flux converters. Journal of Thermoelectricity, 5, 71-79. Search in Google Scholar

[38] Chandrasekar, B., Rao, A.P., Murugesan, M., Subramanian, S., Sharath, D., Manoharan, U., Prodip, B., Balasubramaniam, V. (2021). Ocular surface temperature measurement in diabetic retinopathy. Experimental Eye Research, 211, 108749.10.1016/j.exer.2021.10874934464609 Search in Google Scholar

[39] Spaide, R.F. (2009). Age-related choroidal atrophy. American Journal of Ophthalmology, 147 (5), 801–810.10.1016/j.ajo.2008.12.01019232561 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing