Accès libre

3D Measurement of Discontinuous Objects with Optimized Dual-frequency Grating Profilometry

À propos de cet article

Citez

[1] Luhmann, T., Robson, S., Kyle, S., Harley, I. (2006). Close Range Photogrammetry: Principles, Techniques and Applications. Whittles, ISBN 9781870325509. Search in Google Scholar

[2] Hyun, J.S., Zhang, S. (2020). Influence of projector pixel shape on ultrahigh-resolution 3D shape measurement. Optics Express, 28 (7), 9510-9520.10.1364/OE.389331 Search in Google Scholar

[3] Zhang, S. (2018). High-speed 3D shape measurement with structured light methods: A review. Optics and Lasers in Engineering, 106, 119-131.10.1016/j.optlaseng.2018.02.017 Search in Google Scholar

[4] Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q., Zuo, C. (2020). Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Optics Letters, 45 (7), 1842-1845.10.1364/OL.388994 Search in Google Scholar

[5] Zhou, P., Zhang, Y., Yu, Y., Cai, W., Zhou, G. (2020). 3D shape measurement based on structured light field imaging. Mathematical Biosciences and Engineering, 17 (1), 654-668.10.3934/mbe.2020034 Search in Google Scholar

[6] Zou, H., Da, F., Wang, Z. (2015). A novel 3D face feature based on Geometry image vertical shape information. Optik, 126 (9-10), 898-902.10.1016/j.ijleo.2015.02.083 Search in Google Scholar

[7] Huang, P.S., Zhang, S., Chiang, F.-P. (2005). Trapezoidal phase-shifting method for three-dimensional shape measurement. Optical Engineering, 44 (12), 123601.10.1117/1.2147311 Search in Google Scholar

[8] Quan, C., He, X., Tay, C.J., Shang, H.M. (2001). 3D surface profile measurement using LCD fringe projection. In Second International Conference on Experimental Mechanics. SPIE, vol. 4317.10.1117/12.429629 Search in Google Scholar

[9] Karpinsky, N., Zhang, S. (2012). High-resolution, real-time 3D imaging with fringe analysis. Journal of Real-Time Image Processing, 71, 55-66.10.1007/s11554-010-0167-4 Search in Google Scholar

[10] Takeda, M., Mutoh, K. (1983). Fourier transform profilometry for the automatic measurement of 3D object shape. Applied Optics, 22 (24), 3977-3982.10.1364/AO.22.003977 Search in Google Scholar

[11] Su, X., Chen, W. (2001). Fourier transform profilometry: A review. Optics and Lasers in Engineering, 35 (5), 263-284.10.1016/S0143-8166(01)00023-9 Search in Google Scholar

[12] Su, X., Chen, W., Zhang, Q., Chao, Y. (2001). Dynamic 3-D shape measurement method based on FTP. Optics and Lasers in Engineering, 36 (1), 49-64.10.1016/S0143-8166(01)00028-8 Search in Google Scholar

[13] Su, X., Su, L., Li, W., Xiang, L. (1998). New 3D profilometry based on modulation measurement. In Automated Optical Inspection for Industry: Theory, Technology, and Applications II. SPIE, vol. 3558. Search in Google Scholar

[14] Goldstein, R.M., Zebker, H.A., Werner, C.L. (1988). Statellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23 (4), 713-720.10.1029/RS023i004p00713 Search in Google Scholar

[15] Huntley, J.M., Saldner, H. (1993). Temporal phase-unwrapping algorithm for automated interferogram analysis. Applied Optics, 32 (17), 3047-3052.10.1364/AO.32.00304720829910 Search in Google Scholar

[16] Huntley, J.M., Coggrave, C.R. (1998). Progress in phase unwrapping. In International Conference on Applied Optical Metrology. SPIE, vol. 3407.10.1117/12.323298 Search in Google Scholar

[17] Chan, P.H., Bryanston-Cross, P.J., Parker, S.C. (1995). Fringe-pattern analysis using a spatial phase-stepping method with automatic phase unwrapping. Measurement Science and Technology, 6, 1250-1259.10.1088/0957-0233/6/9/004 Search in Google Scholar

[18] Yao, P., Gai, S., Chen, Y., Chen, W., Da, F. (2021). A multi-code 3D measurement technique based on deep learning. Optics and Lasers in Engineering, 143, 106623.10.1016/j.optlaseng.2021.106623 Search in Google Scholar

[19] Liu, Y., Fu, Y., Zhou, P., Zhuan, Y., Zhong, K., Guan, B. (2020). A real-time 3D shape measurement with color texture using a monochromatic camera. Optics Communications, 474, 126088.10.1016/j.optcom.2020.126088 Search in Google Scholar

[20] Wu, Z., Guo, W., Li, Y., Liu, Y., Zhang, Q. (2020). High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light. Photonics Research, 8 (6), 819-829.10.1364/PRJ.389076 Search in Google Scholar

[21] Guo, W., Wu, Z., Li, Y., Liu, Y., Zhang, Q. (2020). Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction. Optics Express, 28 (18), 26882-26897.10.1364/OE.40347432906954 Search in Google Scholar

[22] Zhang, J., Guo, W., Wu, Z., Zhang, Q. (2021). Three-dimensional shape measurement based on speckle-embedded fringe patterns and wrapped phase-to-height lookup table. Optical Review, 28, 227-238.10.1007/s10043-021-00653-9 Search in Google Scholar

[23] Zhang, S., Yau, S.T. (2007). Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector. Applied Optics, 46 (1), 36-43.10.1364/AO.46.00003617167551 Search in Google Scholar

[24] Hu, Y.S., Xi, J.T., Li, E.B., Chicharo, J., Yang, Z.K. (2006). Three-dimensional profilometry based on shift estimation of projected fringe patterns. Applied Optics, 45 (4), 678-687.10.1364/AO.45.00067816485679 Search in Google Scholar

[25] Gai, S., Da, F. (2011). A novel fringe adaptation method for digital projector. Optics and Lasers in Engineering, 49 (4), 547-552.10.1016/j.optlaseng.2010.12.004 Search in Google Scholar

[26] Jin, X., Chen, Y., Guo, Y., Sun, Y., Chen, J. (2013). Tea flushes identification based on machine vision for high-quality tea at harvest. Applied Mechanics and Materials, 288, 214-218.10.4028/www.scientific.net/AMM.288.214 Search in Google Scholar

[27] Jin, X., Chen, Y., Zhang, H., Sun, Y., Chen, J. (2012). High-quality tea flushes detection under natural conditions using computer vision. International Journal of Digital Content Technology and its Applications (Gyeongju), 6 (8), 600-606. Search in Google Scholar

[28] Zhang, H., Chen, Y., Wang, W., Zhang, G. (2014). Positioning method or tea picking using active computer vision. Nongye Jixie Xuebao / Transactions of the Chinese Society of Agricultural Machinery, 45 (9), 61-65. Search in Google Scholar

[29] Jin, X., Che, J., Chen, Y. (2021). Weed identification using deep learning and image processing in vegetable plantation. IEEE Access, 9, 10940-10950.10.1109/ACCESS.2021.3050296 Search in Google Scholar

[30] Jiang, H., Jiang, X., Ru, Y., Wang, J., Xu, L., Zhou, H. (2020). Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork. Infrared Physics & Technology, 110, 103467.10.1016/j.infrared.2020.103467 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing