Accès libre

Areal Surface Texture Parameters for Copper/Glass Plating Adhesion Characteristics

À propos de cet article

Citez

[1] Hutt, D.A., Williams, K., Conway, P.P., Khoshnaw, F.M., Cui, X., Bhatt, D. (2007). Challenges in the manufacture of glass substrates for electrical and optical interconnect. Circuit World, 33 (1), 22-30.10.1108/03056120710723689 Search in Google Scholar

[2] Cui, X., Hutt, D.A., Conway, P.P. (2012). Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate. Thin Solid Films, 520 (19), 6095-6099.10.1016/j.tsf.2012.05.068 Search in Google Scholar

[3] Hidai, H., Tokura, H. (2001) Direct laser writing of aluminum and copper on glass surfaces from metal powder. Applied Surface Science, 174 (2), 118-124.10.1016/S0169-4332(01)00065-4 Search in Google Scholar

[4] Charbonnier, M., Romand, M. (2002). Tin-free electroless metallization of glass substrates using different PACVD surface treatment processes. Surface & Coatings Technology, 162, 19-30.10.1016/S0257-8972(02)00382-1 Search in Google Scholar

[5] Wang, M.-W., Liu, T.-Y., Pang, D.-C., Hung, J.-C., Tseng, C.-C. (2014). Inkjet printing of a pH sensitive palladium catalyst patterns of ITO glass for electroless copper. Surface & Coatings Technology, 259, 340-345.10.1016/j.surfcoat.2014.02.031 Search in Google Scholar

[6] ISO - International Organization for Standardization. (1997). Geometrical Product Specifications (GPS) — Surface texture: Profile method — Terms, definitions and surface texture parameters. ISO 4287:1997. Search in Google Scholar

[7] Takadoum, J., Bennani, H.H. (1997). Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films. Surface & Coatings Technology, 96 (2-3), 272-282.10.1016/S0257-8972(97)00182-5 Search in Google Scholar

[8] Shahid, M., Hashim, S.A. (2002). Effect of surface roughness on the strength of cleavage joints. International Journal of Adhesion and Adhesives, 22 (3), 235-244.10.1016/S0143-7496(01)00059-8 Search in Google Scholar

[9] Minaki, K., Kitajima, K., Minaki, K., Izawa, M., Tosha, K. (2005). Improvement of surface texture of stainless steel by utilizing dry blasting – 2nd report: Effect of blasting conditions on wettability. Key Engineering Materials, 291-292, 265-270.10.4028/www.scientific.net/KEM.291-292.265 Search in Google Scholar

[10] Minaki, K., Kitajima, K., Minaki, K., Izawa, M., Tosha, K. (2007). Improvement of surface texture of stainless steel by utilizing dry blasting – 3rd report: Effect of blasting surface texture on adhesion of plating. Key Engineering Materials, 329, 353-358.10.4028/www.scientific.net/KEM.329.353 Search in Google Scholar

[11] Ayrilmis, N., Winandy, J.E. (2009). Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard. Materials & Manufacturing Processes, 24 (5), 594-599.10.1080/10426910902748032 Search in Google Scholar

[12] Audry, M.C., Ramos, S., Charlaix, E. (2009). Adhesion between highly rough alumina surfaces: An atomic force microscope study. Journal of Colloid and Interface Science, 331, 371-378.10.1016/j.jcis.2008.11.05019101675 Search in Google Scholar

[13] Ju, D.L., Susan, Y.S.Y., Daniel, M.W., Leong, K.C., Wong, C.C. (2013). Surface roughness effect on copper–alumina adhesion. Microelectronics Reliability, 53 (9-11), 1548-1552. Search in Google Scholar

[14] ISO - International Organization for Standardization. (2012). Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters. ISO 25178-2:2012. Search in Google Scholar

[15] Petzing, J.N., Coupland, J.M., Leach, R. (2010). The Measurement of Rough Surface Topography using Coherence Scanning Interferometry. NPL Measurement Good Practice Guide 116. National Physical Laboratory. Search in Google Scholar

[16] Bénard, Q., Fois, M., Grisel, M. (2005). Influence of fibre reinforcement and peel ply surface treatment towards adhesion of composite surface. International Journal of Adhesion and Adhesives, 25 (5), 404-409.10.1016/j.ijadhadh.2004.11.006 Search in Google Scholar

[17] Bénard, Q., Fois, M., Grisel, M. (2006). Surface treatment of carbon/epoxy and glass/epoxy composites with an excimer laser beam. International Journal of Adhesion and Adhesives, 26 (7), 543-549.10.1016/j.ijadhadh.2005.07.008 Search in Google Scholar

[18] Pacha-Olivenza, M.A., Tejero, R., Fernandez- Calderon, M.C., Anitua, E., Troya, M., Gonzáles- Martin, M.L. (2019). Relevance of topographic parameters on the adhesion and proliferation of human gingival fibroblasts and oral bacterial strains. BioMed Research International, 2019, 8456342.10.1155/2019/8456342643137130956987 Search in Google Scholar

[19] Brunello, G., Brun, P., Gardin, C., Ferroni, L., Bressan, E., Meneghello, R., Zavan, B., Sivolella, S. (2018). Biocompatibility and antibacterial properties of zirconium nitride coating on titanium abutments: An in vitro study. PLoS ONE, 13 (6), e0199591.10.1371/journal.pone.0199591601940529944716 Search in Google Scholar

[20] Hoła, J., Sadowski, L., Reiner, J., Stach, S. (2015). Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers. Construction and Building Materials, 84, 111-120.10.1016/j.conbuildmat.2015.03.014 Search in Google Scholar

[21] Sadowski, L., Czarnecki, S., Hoła, J. (2016). Evaluation of the height 3D roughness parameters of concrete substrate and the adhesion to epoxy resin. International Journal of Adhesion and Adhesives, 67, 3-13.10.1016/j.ijadhadh.2015.12.019 Search in Google Scholar

[22] Sadowski, L., Hoła, J., Czarnecki, S., Wang, D. (2018). Pull-off adhesion prediction of variable thick overlay to the substrate. Automation in Construction, 85, 10-23.10.1016/j.autcon.2017.10.001 Search in Google Scholar

[23] van Dam J.P.B., Abrahami, S.T., Yilmaz, A., Gonzalez-Garcia, Y., Terryn, H., Mol, J.M.C. (2020). Effect of surface roughness and chemistry on the adhesion and durability of a steel-epoxy adhesive interface. International Journal of Adhesion and Adhesives, 96, 102450.10.1016/j.ijadhadh.2019.102450 Search in Google Scholar

[24] He, B., Petzing, J., Webb, P., Leach, R. (2015). Improving copper plating adhesion on glass using laser machining techniques and areal surface texture parameters. Optics and Lasers in Engineering, 75, 39-47.10.1016/j.optlaseng.2015.06.004 Search in Google Scholar

[25] Abere, M.J., Zhong, M., Krüger, J., Bonse, J. (2016). Ultrafast laser-induced morphological transformations, MRS Bulletin, 41, 969-974.10.1557/mrs.2016.271 Search in Google Scholar

[26] Canfield, B.K., Costa, L., Rajput, D., Terekhov, A., Lansford, K., Hofmeister, W.H., Davis, L.M. (2020). Machining of micrometer-scale high aspect ratio features with single femtosecond laser pulses. Journal of Laser Applications, 32 (3), 032021.10.2351/7.0000147 Search in Google Scholar

[27] Leach, R.K. (2001). The measurement of surface texture using stylus instruments. NPL Measurement Good Practice Guide 37. National Physical Laboratory. Search in Google Scholar

[28] Zhang, B., Yung, K.C. (2007). Feasibility of the 248 nm Excimer laser in the laser structuring of fine circuit lines on printed circuit board. The International Journal of Advanced Manufacturing Technology, 33, 1149-1158.10.1007/s00170-006-0564-9 Search in Google Scholar

[29] Chen, Y.T., Ma, K.J., Zhou, J.G., Tseng, A.A. (2005). Excimer laser ablation of glass-based arrayed microstructures for biomedical, mechanical, and optical applications. Journal of Laser Applications, 17 (1), 38-46.10.2351/1.1848520 Search in Google Scholar

[30] Wang, S.Y. (2005). A computer simulation for maskshape effect in the fabrication of an aspheric micro lens array by using a dragging process with excimer laser. Journal of Micromechanics and Microengineering, 15, 1310-1316.10.1088/0960-1317/15/6/024 Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing