Accès libre

New Electronic Interface Circuits for Humidity Measurement Based on the Current Processing Technique

À propos de cet article

Citez

[1] Reverter, F., Casas, O. (2008). Direct interface circuit for capacitive humidity sensors. Sensors and Actuators A, 143, 315-322. https://doi.org/10.1016/j.sna.2007.11.018.10.1016/j.sna.2007.11.018 Search in Google Scholar

[2] Islam, T. (2017). Advanced interfacing techniques for the capacitive sensors. In Advanced Interfacing Techniques for Sensors. Springer, SSMI 25, p. 73-109. https://doi.org/10.1007/978-3-319-55369-6_2.10.1007/978-3-319-55369-6_2 Search in Google Scholar

[3] Kuriyal, N., Kumar, R., Ramola, V. (2014). Optimization and Simulation of humidity sensor readout circuitry using two stage op amp. IOSR Journal of Electrical and Electronics Engineering, 9 (5), 66-72. https://doi.org/10.9790/1676-09536672.10.9790/1676-09536672 Search in Google Scholar

[4] Jalkanen, T., Määttänen, A., Mäkilä, E., Tuura, J., Kaasalainen, M., Lehto, V.P., Ihalainen, P., Peltonen, J., Salonen, J. (2015). Fabrication of porous silicon based humidity sensing elements on paper. Journal of Sensors, 2015, art. ID 927396. https://doi.org/10.1155/2015/927396.10.1155/2015/927396 Search in Google Scholar

[5] Nizhnik, O., Higuchi, K., Maenaka, K. (2014). A standard CMOS humidity sensor without postprocessing. Sensors, 11 (6), 6197-6202. https://doi.org/10.3390/s110606197.10.3390/s110606197323141722163949 Search in Google Scholar

[6] Nath, P., Hussain, I., Dutta, S., Choudhury, A. (2014). Solvent treated paper resistor for filter circuit operation and relative humidity sensing. Indian Journal of Physics, 88 (10), 1093-1097. https://doi.org/10.1007/s12648-014-0547-x.10.1007/s12648-014-0547-x Search in Google Scholar

[7] Blank, T.A., Eksperiandorova, L.P., Belikov, K.N. (2016). Recent trends of ceramic humidity sensors development. Sensors and Actuators B, 228, 416-442. https://doi.org/10.1016/j.snb.2016.01.015.10.1016/j.snb.2016.01.015 Search in Google Scholar

[8] Urrutia, A., Goicoechea, J., Ricchiuti, A.L., Barrera, V.D., Sales, M.S., Arregui, F.J. (2016). Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sensors and Actuators B, 227, 135-141. https://doi.org/10.1016/j.snb.2015.12.031.10.1016/j.snb.2015.12.031 Search in Google Scholar

[9] Mirzaei, A., Hashemi, B., Janghorban, K. (2016). α- Fe2O3 based nanomaterials as gas sensors. Journal of Materials Science: Materials in Electronics, 27, 3109-3144. https://doi.org/10.1007/s10854-015-4200-z.10.1007/s10854-015-4200-z Search in Google Scholar

[10] Miskovic, G., Lukovic, M.D., Nikolic, M.V., Vasiljevic, Z.Z., Nicolics, J., Aleksic, O.S. (2016). Analysis of electronic properties of pseudobrookite thick films with a possible application for NO gas sensing. In Proceedings of the 39th International Spring Seminar on Electronics Technology, 2016, 386-391. DOI: 10.1109/ISSE.2016.7563226.10.1109/ISSE.2016.7563226 Search in Google Scholar

[11] Nikolic, M.V., Vasiljevic, Z.Z., Lukovic, M.D., Pavlovic, V.P., Vujancevic, J., Radovanovic, M., Krstic, J.B., Vlahovic, B., Pavlovic, V.B. (2018). Humidity sensing properties of nanocrystalline pseudobrookite (Fe2TiO5) based thick films. Sensors and Actuators B, 277, 654-664. https://doi.org/10.1016/j.snb.2018.09.063.10.1016/j.snb.2018.09.063 Search in Google Scholar

[12] Polak, L., Sotner, R., Petrzela, J., Jerabek, J. (2018). CMOS current feedback operational amplifier-based relaxation generator for capacity to voltage sensor interface. Sensors, 18 (12), 4488. https://doi.org/10.3390/s18124488.10.3390/s18124488 Search in Google Scholar

[13] Islam, T., Mukhopadhyay, S.C., Suryadevara, N.K. (2017). Smart sensors and internet of things: A postgraduate paper. IEEE Sensors Journal, 17 (3), 577-584. DOI: 10.1109/JSEN.2016.2630124.10.1109/JSEN.2016.2630124 Search in Google Scholar

[14] Ameloot, T., Torre, P.V., Rogier, H. (2018). A compact low-power LoRa IoT sensor node with extended dynamic range for channel measurements. Sensors, 18 (7), 2173. https://doi.org/10.3390/s18072137.10.3390/s18072137 Search in Google Scholar

[15] Scotti, G., Pennissi, S., Monsurro, P., Trifiletti, A. (2014). 88-μ A 1-MHz stray-insensitive CMOS current-mode interface IC for differential capacitive sensors. IEEE Transactions on Circuits and Systems I, 61 (7), 1905-1916. DOI: 10.1109/TCSI.2014.2298275.10.1109/TCSI.2014.2298275 Search in Google Scholar

[16] Pal, D., Srinivasulu, A., Pal, B.B., Demosthenous, A., Das, B.N. (2009). Current conveyor-based square/triangular waveform generators with improved linearity. IEEE Transactions on Instrumentation and Measurement, 58 (7), 2174-2180. DOI: 10.1109/TIM.2008.2006729.10.1109/TIM.2008.2006729 Search in Google Scholar

[17] Abuelma’atti, M.T., Al-Absi, M.H. (2005). A current conveyor based relaxation oscillator as versatile electronic interface for capacitive and resistive sensors. Int. Journal of Electronics, 92 (8), 473-477. https://doi.org/10.1080/08827510410001694798.10.1080/08827510410001694798 Search in Google Scholar

[18] Ferri, G., Parente, F.R., Stornelli, V. (2017). Current conveyor-based differential capacitance analog interface for displacement sensing application. AEU - International Journal of Electronics and Communications, 81, 83-91. https://doi.org/10.1016/j.aeue.2017.07.014.10.1016/j.aeue.2017.07.014 Search in Google Scholar

[19] Almashary, B., Alhokail, H. (2000). Current-mode triangular wave generator using CCIIs. Microelectronics Journal, 31 (4), 239-243. https://doi.org/10.1016/S0026-2692(99)00106-8.10.1016/S0026-2692(99)00106-8 Search in Google Scholar

[20] Depari, A., Sisinni, E., Flammini, A., Ferri, G., Stornelli, V., Barile, G., Parente, F.R. (2018). Autobalancing analog front end for full-range differential capacitive sensing. IEEE Transactions on Instrumentation and Measurement, 67 (4), 885-893. DOI: 10.1109/TIM.2017.2785160.10.1109/TIM.2017.2785160 Search in Google Scholar

[21] Srinivasulu, A. (2012). Current conveyor based relaxation oscillator with tunable grounded resistor/capacitor. International Journal of Design, Analysis and Tools for Integrated Circuits and Systems, 3 (2). Search in Google Scholar

[22] Marcellis, A.D., Ferri, G., Mantenuto, P. (2017). A CCII-based non-inverting Schmitt trigger and its application as a stable multivibrator for capacitive sensor interfacing. International Journal of Circuit Theory and Applications, 45 (8), 1060-1076. https://doi.org/10.1002/cta.2268.10.1002/cta.2268 Search in Google Scholar

[23] Chien, H.C. (2013). Design and implementation of relaxation generators: New application circuits of the DVCC. International Journal of Electronics, 100 (2), 227-244. https://doi.org/10.1080/00207217.2012.687193.10.1080/00207217.2012.687193 Search in Google Scholar

[24] Chien, H.C. (2013). Square/triangular wave generator using single DO-DVCC and three grounded passive components. American Journal of Electrical and Electronic Engineering, 1 (2), 32-36. https://doi.org/10.12691/ajeee-1-2-3.10.12691/ajeee-1-2-3 Search in Google Scholar

[25] Malik, S., Kishore, K., Artee, S.A., Akbar, T., Islam, T. (2016). A CCII-based relaxation oscillator as a versatile interface for resistive and capacitive sensors. In 3rd International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 359-363. DOI: 10.1109/SPIN.2016.7566719.10.1109/SPIN.2016.7566719 Search in Google Scholar

[26] Khan, A.U., Islam, T., Akhtar, J. (2016). An oscillatorbased active bridge circuit for interfacing capacitive sensors with microcontroller compatibility. IEEE Transactions on Instrumentation and Measurement, 65 (11), 2560-2568. DOI: 10.1109/TIM.2016.2581519.10.1109/TIM.2016.2581519 Search in Google Scholar

[27] Khan, A.U., Islam, T., George, B., Rehman, M. (2019). An efficient interface circuit for lossy capacitive sensors. IEEE Transactions on Instrumentation and Measurement, 68 (3), 829-836. DOI: 10.1109/TIM.2018.2853219.10.1109/TIM.2018.2853219 Search in Google Scholar

[28] Microchip Technology Inc. (2017). Microchip PIC 16(L)F19155. Search in Google Scholar

[29] Chaturvedi, B., Kumar, A. (2019). Fully electronically tunable and easily cascadable square/triangular wave generator with duty cycle adjustment. Journal of Circuits, Systems and Computers, 28 (6), 1950105. https://doi.org/10.1142/S0218126619501056.10.1142/S0218126619501056 Search in Google Scholar

[30] Amico, A.D., Natale, C.D. (2001). A contribution on some basic definitions of sensors properties. IEEE Sensors Journal, 1 (3), 183-190. DOI: 10.1109/JSEN.2001.954831.10.1109/JSEN.2001.954831 Search in Google Scholar

[31] Fine, G.F., Cavanagh, L.M., Afonja, A., Binions, R. (2010). Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 10 (6), 5469-5502. https://doi.org/10.3390/s100605469.10.3390/s100605469324771722219672 Search in Google Scholar

[32] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st edition. JCGM 100:2008. Search in Google Scholar

[33] Maheshwari, S., Ansari, M.S. (2012). Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering, 21 (1), 281-289. Search in Google Scholar

[34] SHAW Moisture Meters Ltd. (2004). Shaw automatic dewpoint meter data manual. Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing