Accès libre

Predicting the Surface Quality of Face Milled Aluminium Alloy Using a Multiple Regression Model and Numerical Optimization

À propos de cet article

Citez

[1] Antic, A., Petrovic, P., Zeljkovic, M., Kosec, B., Hodolic, J. (2012). The influence of tool wear on the chip-forming mechanism and tool vibrations. Materiali in tehnologije / Materials and Technology, 46 (3), 279-285.Search in Google Scholar

[2] Tamizharasan, T., Senthil Kumar, N. (2012). Optimization of cutting insert geometry using Deform-3D: Numerical simulation and experimental validation. International Journal of Simulation Modeling, 11 (2), 65-76.10.2507/IJSIMM11(2)1.200Search in Google Scholar

[3] Rashid, M.F.F., Gan, S.Y., Muhammad, N.Y. (2009). Mathematical modeling to predict surface roughness in CNC milling. World Academy of Science -Engineering and Technology, 53, 393-396.Search in Google Scholar

[4] Ozcelik, B., Bayramoglu, M. (2006). The statistical modeling of surface roughness in high-speed flat end milling. International Journal of Machine Tools &Manufacture, 46 (12-13), 1395-1402.10.1016/j.ijmachtools.2005.10.005Search in Google Scholar

[5] Hayajneh, M.T., Tahat, M.S., Bluhm, J. (2007). A study of the effects of machining parameters on the surface roughness in the end-milling process. JordanJournal of Mechanical and Industrial Engineering, 1 (1), 1-5.Search in Google Scholar

[6] Barkallah, M., Louati, J., Haddar, M. (2012). Evaluation of manufacturing tolerance using a statistical method and experimentation. InternationalJournal of Simulation Modeling, 11 (1), 5-16.10.2507/IJSIMM11(1)1.194Search in Google Scholar

[7] Wang, W., Kweon, S.H., Yang, S.H. (2005). A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. Journal ofMaterials Processing Technology, 162 (SI), 702-708.10.1016/j.jmatprotec.2005.02.141Search in Google Scholar

[8] Azuddin, M., Abdullah, W. (2009). A Study on surface roughness and burr formation of Al6061 with different spindle speed and federate for small end milling cutter. International Journal of IntegratedEngineering, 1 (1), 7-14.Search in Google Scholar

[9] Asilturk, I., Neseli, S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45, 785-794.10.1016/j.measurement.2011.12.004Search in Google Scholar

[10] Yang, J.L., Chen, J.C. (2001). A systematic approach for identifying optimum surface roughness performance in end-milling operations. Journal ofIndustrial Technology, 17 (2), 1-8.Search in Google Scholar

[11] Zhang, J.Z., Chen, J.C., Kirby, E.D. (2007). Surface roughness optimization in an end-milling operation using Taguchi design method. Journal of MaterialsProcessing Technology, 184 (1-3), 233-239.10.1016/j.jmatprotec.2006.11.029Search in Google Scholar

[12] Lalwani, D.I., Mehta, N.K., Jain, P.K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal ofMaterials Processing Technology, 206, 167-179.10.1016/j.jmatprotec.2007.12.018Search in Google Scholar

[13] Soleymani Yazdi, M.R., Khorram, A. (2010). Modeling and optimization of milling process by using RSM and ANN methods. IACSIT InternationalJournal of Engineering and Technology, 2 (5), 474-480. Search in Google Scholar

[14] Rashid, M.F.F., Abdul Lani, M.R. (2010). Surface roughness prediction for CNC milling process using artificial neural network. In Proceedings of the WorldCongress on Engineering 2010, 30 June - 2 July 2010. Newswood Limited.Search in Google Scholar

[15] Svalina, I., Sabo, K., Simunovic, G. (2011). Machined surface quality prediction models based on moving least squares and moving least absolute deviations methods. International Journal of AdvancedManufacturing Technology, 57 (9-12), 1099-1106.10.1007/s00170-011-3353-zSearch in Google Scholar

[16] Dweiri, F., Al-Jarrah, M., Al-Wedyan, H. (2003). Fuzzy surface roughness modeling of CNC down milling of Alumic-79. Journal of Materials ProcessingTechnology, 133 (3), 266-275.10.1016/S0924-0136(02)00847-6Search in Google Scholar

[17] Palani, S., Natarajan, U. (2011). Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform. International Journal of AdvancedManufacturing Technology, 54 (9-12), 1033-1042.10.1007/s00170-010-3018-3Search in Google Scholar

[18] Razfar, M.R., Zinati, R.F., Haghshenas, M. (2011). Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm. International Journal of AdvancedManufacturing Technology, 52 (5-8), 487-495.10.1007/s00170-010-2757-5Search in Google Scholar

[19] Stankovic, I., Perinic, M., Jurkovic, Z., Mandic, V., Maricic, S. (2012). Usage of neural network for the prediction of surface roughness after the roller burnishing. Metalurgija, 51 (2), 207-210.Search in Google Scholar

[20] Simunovic, G., Saric, T., Lujic, R. (2009). Surface quality prediction by artificial-neural-networks. Tehnicki vjesnik / Technical Gazette, 16 (2), 43-47.Search in Google Scholar

[21] Vukelic, D., Ostojic, G., Stankovski, S., Lazarevic, M., Tadic, B., Hodolic, J., Simeunovic, N. (2011). Machining fixture assembly/disassembly in RFID environment. Assembly Automation, 31 (1), 62-68.10.1108/01445151111104182Search in Google Scholar

[22] Cosic, P., Lisjak, D., Antolic, D. (2011). Regression analysis and neural networks as methods for production time estimation. Tehnicki vjesnik /Technical Gazette, 18 (4), 479-484.Search in Google Scholar

[23] Sahoo, P. (2011). Optimization of turning parameters for surface roughness using RSM and GA. Advancesin Production Engineering & Management (APEM), 6 (3), 197-208.Search in Google Scholar

[24] Sadilek, M., Cep, R., Budak, I., Sokovic, M. (2011). Aspects of using tool axis inclination angle. Strojniskivestnik / Journal of Mechanical Engineering, 57 (9), 681-688.10.5545/sv-jme.2010.205Search in Google Scholar

[25] Valicek, J., Drzik, M., Hryniewicz, T., Harnicarova, M., Rokosz, K., Kusnerova, M., Barcova, K., Brazina, D. (2012). Non-contact method for surface roughness measurement after machining. Measurement ScienceReview, 12 (5), 184-188.Search in Google Scholar

[26] Montgomery, D.C. (2009). Design and Analysis ofExperiments (7th ed.). John Wiley and Sons. Search in Google Scholar

eISSN:
1335-8871
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing